On the scattering problem and problem of recovery of the shape of a graph

  • O. Boyko Southern Ukrainian National Pedagogical University named after K. D. Ushinsky, Odesa
  • O. Martynyuk Southern Ukrainian National Pedagogical University named after K. D. Ushinsky, Odesa
  • V. Pivovarchik Southern Ukrainian National Pedagogical University named after K. D. Ushinsky, Odesa; University of Vaasa, Finland
Keywords: Sturm-Liouville equation, eigenvalue, equilateral tree, star graph, Dirichlet boundary condition, Neumann boundary condition, lead, S-function, asymptotics.

Abstract

UDC 517.9

We consider a scattering problem generated by the Sturm–Liouville equation on a tree formed by an equilateral compact subtree with a lead (a half-infinite edge) attached to this compact subtree.  It is assumed that the potential on the lead by is identically equal to zero and the potentials on finite edges are real $L_2$-functions.  We show how to determine the shape of the tree by using the S-function and the eigenvalues of the scattering problem. 

References

J. von Below, A characteristic equation associated with an eigenvalue problem on $c^2$-networks, Linear Algebra and Appl., 71, 309–325 (1985). DOI: https://doi.org/10.1016/0024-3795(85)90258-7

R. Band, A. Sawicki, U. Smilansky, Scattering from from isospectral quantum graphs, J. Phys. A: Math. and Theor., 43, № 41 (2010). DOI: https://doi.org/10.1088/1751-8113/43/41/415201

R. Band, A. Sawicki, U. Smilansky, Note on the role of symmetry in scattering from isospectral graphs and drums; math-ph> arXiv:1110.2475.

J. Boman, P. Kurasov, R. Suhr, Schrödinger operators on graphs and geometry II. Spectral estimates for $L_1$-potentials and Ambartsumian's theorem, Integral Equat. and Oper. Theory, 90 (2018); https: // doi.org/ 10.107/ s 00020-018 2467-1. DOI: 10.1007/s00020-018-2467-1. DOI: https://doi.org/10.1007/s00020-018-2467-1

O. Boyko, M. Martynyuk, V. Pivovarchik, On recovering the shape of a quantum tree from the spectrum of the Dirichlet boundary problem, Mat. Stud., 60, № 2, 162–172 (2023). (See the version improved according to the remarks of a referee in https://arxiv.org/abs/2211.11280). DOI: https://doi.org/10.30970/ms.60.2.162-172

R. Carlson, V. Pivovarchik, Spectral asymptotics for quantum graphs with equal edge lengths, J. Phys. A: Math. and Theor., 41, Article 145202 (2008). DOI: https://doi.org/10.1088/1751-8113/41/14/145202

A. Chernyshenko, V. Pivovarchik, Recovering the shape of a quantum graph, Integral Equat. and Oper. Theory, 92 (2020). DOI: https://doi.org/10.1007/s00020-020-02581-w

D. E. Edmunds, W.D. Evans, Spectral theory and differential operators, Clarendon Press, Oxford (1989).

I. Gohberg, M. Krein, Introduction to the theory of linear non-selfadjoint operators in Hilbert space, Amer. Math. Soc. (1969). DOI: https://doi.org/10.1090/mmono/018

B. Gutkin, U. Smilansky, Can one hear the shape of a graph}? J. Phys. A: Math. and Gen., 34, 6061–6068 (2001). DOI: https://doi.org/10.1088/0305-4470/34/31/301

O. Hul, M. Lawniczak, S. Bauch, A. Sawicki, M. Kus, L. Sirko, Are scattering properties of graphs uniquely connected to their shapes? Phys. Rev. Lett., 109, Article 040402 (2012). DOI: https://doi.org/10.1103/PhysRevLett.109.040402

P. Kurasov, Spectral geometry of graphs, Oper. Theory: Adv. and Appl., 293, Birkhäuser/Springer (2024); https://doi.org/10.1007/978-3-662-67872-5. DOI: https://doi.org/10.1007/978-3-662-67872-5

P. Kurasov, S. Naboko, Rayleigh estimates for differential operators on graphs, J. Spectr. Theory, 4, № 2, 211–219 (2014); DOI 10.4171/JST. DOI: https://doi.org/10.4171/jst/67

P. Kurasov, F. Stenberg, On the inverse scattering problem on branching graphs, J. Phys. A, 35, 101–121 (2002). DOI: https://doi.org/10.1088/0305-4470/35/1/309

Y. Latushkin, V. Pivovarchik, Scattering in a forked-shaped waveguide, Integral Equat. and Oper. Theory, 61, 365–399 (2008). DOI: https://doi.org/10.1007/s00020-008-1597-2

C.-K. Law, V. Pivovarchik, Characteristic functions of quantum graphs, J. Phys A: Math. and Theor., 42, Article 035302 (2009). DOI: https://doi.org/10.1088/1751-8113/42/3/035302

V. A. Marchenko, Sturm–Liouville operators and applications, revised ed., AMS Chelsea Publishing, Providence, RI (2011). DOI: https://doi.org/10.1090/chel/373

M. Möller, V. Pivovarchik, Spectral theory of operator pencils, Hermite–Biehler functions, and their applications, Birkhäuser, Cham (2015). DOI: https://doi.org/10.1007/978-3-319-17070-1

M. Möller, V. Pivovarchik, Direct and inverse finite-dimensional spectral problems on graphs, Oper. Theory: Adv. and Appl., 283, Birkhäuser/Springer (2020); https://www.springer.com/gp/book/9783030604837. DOI: https://doi.org/10.1007/978-3-030-60484-4

D. Mugnolo, V. Pivovarchik, Distinguishing co-spectral quantum graphs by scattering, J. Phys. A: Math. and Theor., 56, № 9 (2023); DOI: 10.1088/1751-8121/acbb44,arXiv: 2211.05465. DOI: https://doi.org/10.1088/1751-8121/acbb44

Y. Okada, A. Shudo, S. Tasaki, T. Harayama, Can one hear the shape of a drum}?: revisited. J. Phys. A: Math. and Gen., 38 (2005); https://doi.org/10.1007/s00020-024-02759-6. DOI: https://doi.org/10.1088/0305-4470/38/9/L02

V. Pivovarchik, Scattering in a loop-shaped waveguide, in: Recent Advances in Operator Theory, Groningen (1998), Birkhäuser, Basel and Boston (2001), p.~527–543. DOI: https://doi.org/10.1007/978-3-0348-8323-8_24

T. Regge, Construction of potential from resonances, Nuovo Cimento, 9, 491–503, 671–679 (1958). DOI: https://doi.org/10.1007/BF02725104

Published
04.09.2024
How to Cite
BoykoO., MartynyukO., and PivovarchikV. “On the Scattering Problem and Problem of Recovery of the Shape of a Graph”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 8, Sept. 2024, pp. 1120 -31, doi:10.3842/umzh.v76i8.8151.
Section
Research articles