Boundedness of the $L$-index in the direction of the composition of slice entire functions and slice holomorphic functions in the unit ball

Keywords: slice entire function, slice holomorphic function in the unit ball, bounded $L$-index in direction, composition of functions, logarithmic criterion, Hayman's Theorem.

Abstract

UDC 517.55

We study the composition $F(z):=f(\underbrace{\Phi(z),\ldots,\Phi(z)}_{m\text{ times}})\colon\mathbb{C}^n\to\mathbb{C}$, $n\geq 1, m\geq 1,$ where $\Phi\colon\mathbb{B}^n\to\mathbb{C}$ is a slice holomoprphic function in the unit ball and  $f\colon\mathbb{C}^m\to\mathbb{C}$ is a slice holomoprphic function in the whole $m$-dimensional complex space $\mathbb{C}^m$, i.e., a slice function $g_z(\tau)=f(z+\mathbf{b}\tau)$ is an entire function of $\tau\in\mathbb{C}$ for any fixed $z\in\mathbb{C}^m$ and a given direction $\mathbf{b}\in\mathbb{C}^m$.  Theslice holomorphicity in a unit ball $\mathbb{B}^n$ means that, for a fixed direction $\mathbf{b}\in\mathbb{C}^n\setminus\{\mathbf{0}\}$ and any point $z^0\in \mathbb{B}^n$  of the unit ball, the function is holomorphic on its restriction to the slice $\{z^0+t\mathbf{b}\colon t\in\mathbb{C}\}\cap\mathbb{B}^n.$  An additional assumption about equicontinuity  of these functions allows us to construct an analog of the theory of entire functions with bounded index. This analog can be applied to the investigation of the properties of slice-holomorphic solutions of directional differential equations that describe local behaviors and  the distribution of values. We establish conditions sufficient for the boundedness of the $L$-index in the direction $\mathbf{b}$ for the function $F(z).$ Some of the obtained results are also new in one-dimensional case, i.e., for $n=1$ and $m=1.$ The indicated conditions are obtained by using two different approaches: an analog of Hayman's theorem and analog of the logarithmic criterion.  We also present examples of functions whose composition satisfies all conditions of only one of the obtained theorems.

References

A. Bandura, M. Martsinkiv, O. Skaskiv, Slice holomorphic functions in the unit ball having a bounded $L$-index in direction, Axioms, 10, № 1, Article 4 (2021); https://doi.org/10.3390/axioms10010004. DOI: https://doi.org/10.3390/axioms10010004

A. Bandura, L. Shegda, O. Skaskiv, L. Smolovyk, Some criteria of boundedness of $L$-index in a direction for slice holomorphic functions in the unit ball, Int. J. Appl. Math., 34, № 4, 775–793 (2021); https://doi.org/10.12732/ijam.v34i4.13. DOI: https://doi.org/10.12732/ijam.v34i4.13

A. Bandura, T. Salo, O. Skaskiv, Slice holomorphic functions in the unit ball: boundedness of $L$-index in a direction and related properties, Mat. Stud., 57, № 1, 68–78 (2022); https://doi.org/10.30970/ms.57.1.68–78. DOI: https://doi.org/10.30970/ms.57.1.68-78

A. Bandura, O. Skaskiv, Some criteria of boundedness of the $L$-index in direction for slice holomorphic functions of several complex variables, J. Math. Sci., 244, № 1, 1–21 (2020); https://doi.org/10.1007/s10958-019-04600-7. DOI: https://doi.org/10.1007/s10958-019-04600-7

A. I. Bandura, Some improvements of criteria of $L$-index boundedness in direction, Mat. Stud., 47, № 1, 27–32 (2017); https://doi.org/10.15330/ms.47.1.27-32. DOI: https://doi.org/10.15330/ms.47.1.27-32

A. I. Bandura, O. B. Skaskiv, I. R. Tymkiv, Composition of entire and analytic functions in the unit ball, Carpathian Math. Publ., 14, № 1, 95–104 (2022); https://doi.org/10.15330/cmp.14.1.95-104. DOI: https://doi.org/10.15330/cmp.14.1.95-104

A. I. Bandura, Composition, product and sum of analytic functions of bounded $L$-index in direction in the unit ball, Mat. Stud., 50, № 2, 115–134 (2018); https://doi.org/10.15330/ms.50.2.115-134. DOI: https://doi.org/10.15330/ms.50.2.115-134

A. I. Bandura, M. M. Sheremeta, Bounded $l$-index and $l-M$-index and compositions of analytic functions, Mat. Stud., 48, № 2, 180–188 (2017); https://doi.org/10.15330/ms.48.2.180-188. DOI: https://doi.org/10.15330/ms.48.2.180-188

A. I. Bandura, O. B. Skaskiv, V. L. Tsvigun, The functions of bounded $L$-index in the collection of variables analytic in $mathbb{D}timesmathbb{C}$, J. Math. Sci., 246, № 2, 256–263 (2020); https://doi.org/10.1007/s10958-020-04735-y. DOI: https://doi.org/10.1007/s10958-020-04735-y

V. P. Baksa, A. I. Bandura, T. M. Salo, O. B. Skaskiv, Note on boundedness of the $L$-index in the direction of the composition of slice entire functions, Mat. Stud., 58, № 1, 58–68 (2022); https://doi.org/10.30970/ms.58.1.58-68. DOI: https://doi.org/10.30970/ms.58.1.58-68

M. T. Bordulyak, M. M. Sheremeta, On the existence of entire functions of bounded $l$-index and $l$-regular growth, Ukr. Math. J., 48, № 9, 1322–1340 (1996); https://doi.org/10.1007/BF02595355. DOI: https://doi.org/10.1007/BF02595355

G. H. Fricke, Functions of bounded index and their logarithmic derivatives, Math. Ann., 206, № 3, 215–223 (1973); https://doi.org/10.1007/BF01429209. DOI: https://doi.org/10.1007/BF01429209

G. H. Fricke, Entire functions of locally slow growth, J. Anal. Math., 28, № 1, 101–122 (1975); https://doi.org/ 10.1007/BF02786809. DOI: https://doi.org/10.1007/BF02786809

G. H. Fricke, A note on bounded index and bounded value distribution, Indian J. Pure and Appl. Math., 11, № 4, 428–432 (1980).

G. H. Fricke, S. M. Shah, On bounded value distribution and bounded index, Nonlinear Anal., 2, № 4, 423–435 (1978); https://doi.org/10.1016/0362-546X (78)90049-4. DOI: https://doi.org/10.1016/0362-546X(78)90049-4

W. K. Hayman, Differential inequalities and local valency, Pacific J. Math., 44, № 1, 117–137 (1973); https://doi.org/ 10.2140/pjm.1973.44.117. DOI: https://doi.org/10.2140/pjm.1973.44.117

I. M. Hural, About some problem for entire functions of unbounded index in any direction, Mat. Stud., 51, № 1, 107–110 (2019); https://doi.org/10.15330/ms.51.1.107-110. DOI: https://doi.org/10.15330/ms.51.1.107-110

B. Lepson, Differential equations of infinite order, hyper-Dirichlet series and entire functions of bounded index, Entire Functions and Related Parts of Analysis, Proc. Symp. Pure Math., vol. 11 (J. Korevaar, ed.), Amer. Math. Soc., Providence (1968), p. 298–307. DOI: https://doi.org/10.1090/pspum/011/0237788

J. J. Macdonnell, Some convergence theorems for Dirichlet-type series whose coefficients are entire functions of bounded index, Ph. D. Thesis, Catholic University of America, Washington (1957).

F. Nuray, R. F. Patterson, Multivalence of bivariate functions of bounded index, Matematiche, 70, № 2, 225–233 (2015); https://doi.org/10.4418/2015.70.2.14.

R. Roy, S. M. Shah, The product of two functions of bounded value distribution, Indian J. Pure and Appl. Math., 17, № 5, 690–693 (1986).

R. Roy, S. M. Shah, Functions of bounded index, bounded value distribution and $v$-bounded index, Nonlinear Anal., 11, 1383–1390 (1987); https://doi.org/10.1016/0362-546X (87)90090-3. DOI: https://doi.org/10.1016/0362-546X(87)90090-3

S. Shah, Entire functions of bounded value distribution and gap power series, Studies in Pure Mathematics to the Memory of Paul Turán (P. Erdõs, L. Alpár, G. Halász, A. Sárközy, eds.), Birkhäuser, Basel (1983), p. 629–634; https://doi.org/10.1007/978-3-0348-5438-2_54. DOI: https://doi.org/10.1007/978-3-0348-5438-2_54

M. M. Sheremeta, On the $l$-index boundedness of some composition of functions, Mat. Stud., 47, № 2, 207–210 (2017); https://doi.org/10.15330/ms.47.2.207-210. DOI: https://doi.org/10.15330/ms.47.2.207-210

M. Sheremeta, Analytic functions of bounded index, VNTL Publ., Lviv (1999).

M. M. Sheremeta, Generalization of the Fricke theorem on entire functions of finite index, Ukr. Math. J., 48, № 3, 460–466 (1996); https://doi.org/10.1007/BF02378535. DOI: https://doi.org/10.1007/BF02378535

M. M. Sheremeta, M. T. Bordulyak, Boundedness of the $l$-index of Laguerre–Polya entire functions, Ukr. Math. J., 55, № 1, 112–125 (2003); https://doi.org/10.1023/A:1025076720052. DOI: https://doi.org/10.1023/A:1025076720052

Published
03.07.2024
How to Cite
BanduraA., SaloT., and SkaskivO. “Boundedness of the $L$-Index in the Direction of the Composition of Slice Entire Functions and Slice Holomorphic Functions in the Unit Ball”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 6, July 2024, pp. 802–819, doi:10.3842/umzh.v76i5.8153.
Section
Research articles