ε-Isometries of convex bodies in ln∞ and ln1
DOI:
https://doi.org/10.3842/umzh.v76i9.8295Keywords:
\varepsilon--isometry, isometric approximation, classical Banach spaces, stabilityAbstract
UDC 517.5
It is shown that every ε-isometry of a convex body in ln∞ or in ln1 can be well approximated by an affine surjective isometry.
References
Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, vol. 1, Colloquium Publication, 48, Amer. Math. Soc., Providence, RI (2000). DOI: https://doi.org/10.1090/coll/048
Th. M. Rassias, Properties of isometries and approximate isometries. Recent progress in inequalities (Niš, 1996), Math. Appl., 430, Kluwer Acad. Publ., Dordrecht (1998), p. 341–379. DOI: https://doi.org/10.1007/978-94-015-9086-0_19
Th. M. Rassias, Properties of isometric mappings, J. Math. Anal. and Appl., 235, 108–121 (1999). DOI: https://doi.org/10.1006/jmaa.1999.6363
I. A. Vestfrid, ε-isometries in Euclidean spaces, Nonlinear Anal., 63, 1191–1198 (2005). DOI: https://doi.org/10.1016/j.na.2005.05.036
I. A. Vestfrid, Addendum to``ε-Isometries in Euclidean spaces, [Nonlinear Anal., 63, 1191–1198 (2005)], Nonlinear Anal., 67, 1306–1307 (2007). DOI: https://doi.org/10.1016/j.na.2006.06.053
I. A. Vestfrid, ε-Isometries in l^n_∞, Nonlinear Funct. Anal. and Appl., 12, 433–438 (2007).
I. A. Vestfrid, ε-Isometries in l^n_1, Aequat. Math. (2024); https://doi.org/10.1007/s00010-023-01023-3. DOI: https://doi.org/10.1007/s00010-023-01023-3