Essential amenability of Fréchet algebras
Abstract
UDC 517.98
Essential amenability of Banach algebras have been defined and investigated. Here, this concept will be introduced for Frechet algebras. Then a number of well-known results of essential amenability of Banach algebras are generalized for Fréchet algebras. Moreover, related results about Segal–Fréchet algebras are provided. As the main result, it is provedthat if $(\mathcal{A} , p_{\ell})$ is an amenable Fréchet algebra with a uniformly bounded approximate identity, then every symmetric Segal – Fréchet algebra in $(\mathcal{A} , p_{\ell})$ is essentially amenable.
References
F. Abtahi, S. Rahnama, A. Rejali, Weak amenability of Fréchet algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77, № 4, 93 – 104 (2015) https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full94e_257108.pdf
F. Abtahi, S. Rahnama, A. Rejali, Semisimple Segal – Fréchet algebras ´Period, Math. Hungar., 71, 146 – 154 (2015) https://doi.org/10.1007/s10998-015-0092-1 DOI: https://doi.org/10.1007/s10998-015-0092-1
F. Abtahi, S. Rahnama, $varphi$ –Contractibility and character contractibility of Fréchet algebras, Ann. Funct. Anal., 8, № 1, 75 – 89 (2017) https://doi.org/10.1215/20088752-3764415 DOI: https://doi.org/10.1215/20088752-3764415
J. T. Burnham, Closed ideals in subalgebras of Banach algebras, Proc. Amer. Math. Soc., 32, № 2, 551 – 555 (1972) https://doi.org/10.2307/2037857 DOI: https://doi.org/10.2307/2037857
F. Ghahramani, R. J. Loy, Generalized notions of amenability, J. Funct. Anal., 208, 229 – 260 (2004) https://doi.org/10.1016/S0022-1236(03)00214-3 DOI: https://doi.org/10.1016/S0022-1236(03)00214-3
H. Goldmann, Uniform Fréchet algebras, North-Holland Math. Stud., 162, North-Holand, Amesterdam; New York (1990) viii+355 pp. ISBN: 0-444-88488-2
A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer Acad. Publ., Dordrecht (1989) rm xx+334 pp. ISBN: 0-7923-0217-6 https://doi.org/10.1007/978-94-009-2354-6 DOI: https://doi.org/10.1007/978-94-009-2354-6
P. Lawson, C. J. Read, Approximate amenability of Fréchet algebras, Math. Proc. Cambridge Phil. Soc., 145, 403 – 418 (2008) https://doi.org/10.1017/S0305004108001473 DOI: https://doi.org/10.1017/S0305004108001473
R. Meise, D. Vogt, Introduction to functional analysis, Oxford Sci. Publ. (1997) x+437 pp. ISBN: 0-19-851485-9
A. Yu. Pirkovskii, Flat cyclic Frechet modules, amenable Fréchet algebras, and approximate identities, Homology, Homotopy and Appl., 11, № 1, 81 – 114 (2009) http://projecteuclid.org/euclid.hha/1251832561
V. Runde, Lectures on amenability, Springer-Verlag, Berlin; Heidelberg (2002) xiv+296 pp. ISBN: 3-540-42852-6 https://doi.org/10.1007/b82937 DOI: https://doi.org/10.1007/b82937
H. Samea, Essential amenability of abstract Segal algebras, Bull. Aust. Math. Soc., 79, 319 – 325 (2009) https://doi.org/10.1017/S0004972708001329 DOI: https://doi.org/10.1017/S0004972708001329
L. B. Schweitzer, Dense nuclear Fréchet ideals in $C^{*}$-algebras, Univ. California, San Francisco, preprint (2013) https://arxiv.org/abs/1205.0089v10
M. Sugiura, Fourier series of smooth functions on compact Lie groups, Osaka J. Math., 8, 33 – 47 (1971) http://projecteuclid.org/euclid.ojm/1200693127
J. L. Taylor, Homology and cohomology for topological algebras, Adv. Math., 9, 137 – 182 (1972) https://doi.org/10.1016/0001-8708(72)90016-3 DOI: https://doi.org/10.1016/0001-8708(72)90016-3
J. Voigt, Factorization in Fréchet algebras, J. London Math. Soc (2), 29, 147 – 152 (1984) https://doi.org/10.1112/jlms/s2-29.1.147 DOI: https://doi.org/10.1112/jlms/s2-29.1.147
This work is licensed under a Creative Commons Attribution 4.0 International License.