Essential amenability of Fréchet algebras

  • F. Abtahi Dep. Pure Math., Univ. Isfahan, Iran
  • S. Rahnama Dep. Pure Math., Univ. Isfahan, Iran
Keywords: Fr´echet algebra, Banach algebra


UDC 517.98

Essential amenability of Banach algebras have been defined and investigated. Here, this concept will be introduced for Frechet algebras. Then a number of well-known results of essential amenability of Banach algebras are generalized for Fréchet algebras. Moreover, related results about Segal–Fréchet algebras are provided. As the main result, it is provedthat if $(\mathcal{A} , p_{\ell})$ is an amenable Fréchet algebra with a uniformly bounded approximate identity, then every symmetric Segal – Fréchet algebra in $(\mathcal{A} , p_{\ell})$ is essentially amenable.


F. Abtahi, S. Rahnama, A. Rejali, Weak amenability of Fréchet algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77, № 4, 93 – 104 (2015)

F. Abtahi, S. Rahnama, A. Rejali, Semisimple Segal – Fréchet algebras ´Period, Math. Hungar., 71, 146 – 154 (2015) DOI:

F. Abtahi, S. Rahnama, $varphi$ –Contractibility and character contractibility of Fréchet algebras, Ann. Funct. Anal., 8, № 1, 75 – 89 (2017) DOI:

J. T. Burnham, Closed ideals in subalgebras of Banach algebras, Proc. Amer. Math. Soc., 32, № 2, 551 – 555 (1972) DOI:

F. Ghahramani, R. J. Loy, Generalized notions of amenability, J. Funct. Anal., 208, 229 – 260 (2004) DOI:

H. Goldmann, Uniform Fréchet algebras, North-Holland Math. Stud., 162, North-Holand, Amesterdam; New York (1990) viii+355 pp. ISBN: 0-444-88488-2

A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer Acad. Publ., Dordrecht (1989) rm xx+334 pp. ISBN: 0-7923-0217-6 DOI:

P. Lawson, C. J. Read, Approximate amenability of Fréchet algebras, Math. Proc. Cambridge Phil. Soc., 145, 403 – 418 (2008) DOI:

R. Meise, D. Vogt, Introduction to functional analysis, Oxford Sci. Publ. (1997) x+437 pp. ISBN: 0-19-851485-9

A. Yu. Pirkovskii, Flat cyclic Frechet modules, amenable Fréchet algebras, and approximate identities, Homology, Homotopy and Appl., 11, № 1, 81 – 114 (2009)

V. Runde, Lectures on amenability, Springer-Verlag, Berlin; Heidelberg (2002) xiv+296 pp. ISBN: 3-540-42852-6 DOI:

H. Samea, Essential amenability of abstract Segal algebras, Bull. Aust. Math. Soc., 79, 319 – 325 (2009) DOI:

L. B. Schweitzer, Dense nuclear Fréchet ideals in $C^{*}$-algebras, Univ. California, San Francisco, preprint (2013)

M. Sugiura, Fourier series of smooth functions on compact Lie groups, Osaka J. Math., 8, 33 – 47 (1971)

J. L. Taylor, Homology and cohomology for topological algebras, Adv. Math., 9, 137 – 182 (1972) DOI:

J. Voigt, Factorization in Fréchet algebras, J. London Math. Soc (2), 29, 147 – 152 (1984) DOI:

How to Cite
Abtahi F., and RahnamaS. “Essential Amenability of Fréchet Algebras”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 7, July 2020, pp. 867-76, doi:10.37863/umzh.v72i7.830.
Research articles