Essential amenability of Fréchet algebras

Authors

  • F. Abtahi Dep. Pure Math., Univ. Isfahan, Iran
  • S. Rahnama Dep. Pure Math., Univ. Isfahan, Iran

DOI:

https://doi.org/10.37863/umzh.v72i7.830

Keywords:

Fr´echet algebra, Banach algebra

Abstract

UDC 517.98

Essential amenability of Banach algebras have been defined and investigated. Here, this concept will be introduced for Frechet algebras. Then a number of well-known results of essential amenability of Banach algebras are generalized for Fréchet algebras. Moreover, related results about Segal–Fréchet algebras are provided. As the main result, it is provedthat if (A,p) is an amenable Fréchet algebra with a uniformly bounded approximate identity, then every symmetric Segal – Fréchet algebra in (A,p) is essentially amenable.

References

F. Abtahi, S. Rahnama, A. Rejali, Weak amenability of Fréchet algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 77, № 4, 93 – 104 (2015) https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full94e_257108.pdf

F. Abtahi, S. Rahnama, A. Rejali, Semisimple Segal – Fréchet algebras ´Period, Math. Hungar., 71, 146 – 154 (2015) https://doi.org/10.1007/s10998-015-0092-1 DOI: https://doi.org/10.1007/s10998-015-0092-1

F. Abtahi, S. Rahnama, varphi –Contractibility and character contractibility of Fréchet algebras, Ann. Funct. Anal., 8, № 1, 75 – 89 (2017) https://doi.org/10.1215/20088752-3764415 DOI: https://doi.org/10.1215/20088752-3764415

J. T. Burnham, Closed ideals in subalgebras of Banach algebras, Proc. Amer. Math. Soc., 32, № 2, 551 – 555 (1972) https://doi.org/10.2307/2037857 DOI: https://doi.org/10.2307/2037857

F. Ghahramani, R. J. Loy, Generalized notions of amenability, J. Funct. Anal., 208, 229 – 260 (2004) https://doi.org/10.1016/S0022-1236(03)00214-3 DOI: https://doi.org/10.1016/S0022-1236(03)00214-3

H. Goldmann, Uniform Fréchet algebras, North-Holland Math. Stud., 162, North-Holand, Amesterdam; New York (1990) viii+355 pp. ISBN: 0-444-88488-2

A. Ya. Helemskii, The homology of Banach and topological algebras, Kluwer Acad. Publ., Dordrecht (1989) rm xx+334 pp. ISBN: 0-7923-0217-6 https://doi.org/10.1007/978-94-009-2354-6 DOI: https://doi.org/10.1007/978-94-009-2354-6

P. Lawson, C. J. Read, Approximate amenability of Fréchet algebras, Math. Proc. Cambridge Phil. Soc., 145, 403 – 418 (2008) https://doi.org/10.1017/S0305004108001473 DOI: https://doi.org/10.1017/S0305004108001473

R. Meise, D. Vogt, Introduction to functional analysis, Oxford Sci. Publ. (1997) x+437 pp. ISBN: 0-19-851485-9

A. Yu. Pirkovskii, Flat cyclic Frechet modules, amenable Fréchet algebras, and approximate identities, Homology, Homotopy and Appl., 11, № 1, 81 – 114 (2009) http://projecteuclid.org/euclid.hha/1251832561

V. Runde, Lectures on amenability, Springer-Verlag, Berlin; Heidelberg (2002) xiv+296 pp. ISBN: 3-540-42852-6 https://doi.org/10.1007/b82937 DOI: https://doi.org/10.1007/b82937

H. Samea, Essential amenability of abstract Segal algebras, Bull. Aust. Math. Soc., 79, 319 – 325 (2009) https://doi.org/10.1017/S0004972708001329 DOI: https://doi.org/10.1017/S0004972708001329

L. B. Schweitzer, Dense nuclear Fréchet ideals in C-algebras, Univ. California, San Francisco, preprint (2013) https://arxiv.org/abs/1205.0089v10

M. Sugiura, Fourier series of smooth functions on compact Lie groups, Osaka J. Math., 8, 33 – 47 (1971) http://projecteuclid.org/euclid.ojm/1200693127

J. L. Taylor, Homology and cohomology for topological algebras, Adv. Math., 9, 137 – 182 (1972) https://doi.org/10.1016/0001-8708(72)90016-3 DOI: https://doi.org/10.1016/0001-8708(72)90016-3

J. Voigt, Factorization in Fréchet algebras, J. London Math. Soc (2), 29, 147 – 152 (1984) https://doi.org/10.1112/jlms/s2-29.1.147 DOI: https://doi.org/10.1112/jlms/s2-29.1.147

Downloads

Published

15.07.2020

Issue

Section

Research articles

How to Cite

Abtahi , F., and S. Rahnama. “Essential Amenability of Fréchet Algebras”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 7, July 2020, pp. 867-76, https://doi.org/10.37863/umzh.v72i7.830.