Characterizations of additive $\xi$-Lie derivations on unital algebras

  • M. Ashraf Aligarh Muslim Univ., India
  • A. Jabeen Jamia Millia Islamia, India
Keywords: unital algebra, Lie derivation, ξ-Lie derivation

Abstract

UDC 512.5

Let $\mathscr{R}$ be a commutative ring with unity and $\mathscr{U}$ be a unital algebra over $\mathscr{R}$ (or field $\mathbb{F}$).
An $\mathscr{R}$-linear map $L:\mathscr{U}\rightarrow\mathscr{U}$ is called a Lie derivation on $\mathscr{U}$ if $L([u,v])=[L(u),v]+[u,L(v)]$ holds for all $u,$ $v \in\mathscr{U}.$ For scalar $\xi\in\mathbb{F},$ an additive map $L\colon \mathscr{U}\rightarrow\mathscr{U}$ is called an additive $\xi$-Lie derivation on $\mathscr{U}$ if $L([u,v]_{\xi})=[L(u),v]_{\xi}+[u,L(v)]_{\xi},$ where $[u,v]_{\xi}=uv-\xi vu$ holds for all $u, v\in\mathscr{U}.$ In the present paper, under certain assumptions on $\mathscr{U}$
it is shown that every Lie derivation (resp., additive $\xi$-Lie derivation) ${L}$ on $\mathscr{U}$ is of standard form, i.e., $L=\delta+\phi,$ where $\delta$ is an additive derivation on $\mathscr{U}$ and $\phi$ is a mapping $\phi\colon \mathscr{U}\rightarrow Z(\mathscr{U})$ vanishing at $[u,v]$ with $uv=0$ in $\mathscr{U}.$ Moreover, we also characterize the additive $\xi$-Lie derivation for $\xi\neq 1$ by its action at zero product in a unital algebra over $\mathbb{F}.$

References

D. Benkovič, N. Širovnik, Jordan derivations of unital algebras with idempotents, Linear Algebra and Appl., 437, 2271 – 2284 (2012), https://doi.org/10.1016/j.laa.2012.06.009 DOI: https://doi.org/10.1016/j.laa.2012.06.009

D. Benkovič, Lie triple derivations of unital algebras with idempotents, Linear and Multilinear Algebra, 63, № 1, 141 – 165 (2015), https://doi.org/10.1080/03081087.2013.851200 DOI: https://doi.org/10.1080/03081087.2013.851200

J. A. Brooke, P. Busch, D. B. Pearson, Commutativity up to a factor of bounded operators in complex Hilbert spaces, Proc. Roy. Soc. London. Ser. A, 458 (2017), 109 – 118 (2002), https://doi.org/10.1098/rspa.2001.0858 DOI: https://doi.org/10.1098/rspa.2001.0858

W. S. Cheung, Maps on triangular algebras, Ph. D. Dissertation, Univ. Victoria (2000).

P. Ji, W. Qi, Characterizations of Lie derivations of triangular algebras, Linear Algebra and Appl., 435, 1137 – 1146 (2011), https://doi.org/10.1016/j.laa.2011.02.048 DOI: https://doi.org/10.1016/j.laa.2011.02.048

P. Ji , W. Qi, X. Sun, Characterizations of Lie derivations of factor von Neumann algebras, Linear and Multilinear Algebra, 61, № 3, 417 – 428 (2013), https://doi.org/10.1080/03081087.2012.689982 DOI: https://doi.org/10.1080/03081087.2012.689982

C. Kassel, Quantum groups, Springer-Verlag, New York (1995), https://doi.org/10.1007/978-1-4612-0783-2 DOI: https://doi.org/10.1007/978-1-4612-0783-2

F. Lu, W. Jing, Characterizations of Lie derivations of $B(X)$, Linear Algebra and Appl., 432, 89 – 99 (2010), https://doi.org/10.1016/j.laa.2009.07.026 DOI: https://doi.org/10.1016/j.laa.2009.07.026

X. Qi, J. Hou, Additive Lie ($xi$ -Lie) derivati ons and generalized Lie ($xi$ -Lie) derivations on nest algebras, Linear Algebra and Appl., 431, 843 – 854 (2009), https://doi.org/10.1016/j.laa.2009.03.037 DOI: https://doi.org/10.1016/j.laa.2009.03.037

X. Qi, J. Cui, J. Hou, Characterizing additive $xi$ -Lie derivations of prime algebras by $xi$ -Lie zero products, Linear Algebra and Appl., 434, 669 – 682 (2011), https://doi.org/10.1016/j.laa.2010.09.030 DOI: https://doi.org/10.1016/j.laa.2010.09.030

X. Qi, Characterizing Lie derivations on triangular algebras by local actions, Electron. J. Linear Algebra, 26, 816 – 835 (2013), https://doi.org/10.13001/1081-3810.1689 DOI: https://doi.org/10.13001/1081-3810.1689

X. Qi, J. Hou, Characterization of Lie derivations on von Neumann algebras, Linear Algebra and Appl., 438, 533 – 548 (2013), https://doi.org/10.1016/j.laa.2012.08.019 DOI: https://doi.org/10.1016/j.laa.2012.08.019

X. Qi, Characterization of (generalized) Lie derivations on $J$ -subspace lattice algebras by local action, Aequat. Math., 87, 53 – 69 (2014), https://doi.org/10.1007/s00010-012-0177-3 DOI: https://doi.org/10.1007/s00010-012-0177-3

X. Qi, J. Ji, J. Hou, Characterization of additive maps $xi $-Lie derivable at zero on von Neumann algebras, Publ. Math. Debrecen, 86, № 1-2, 99 – 117 (2015), https://doi.org/10.5486/PMD.2015.6084 DOI: https://doi.org/10.5486/PMD.2015.6084

W. Yang, J. Zhun, Characterizations of additive (generalized) $xi$ -Lie $(alpha , beta )$-derivations on triangular algebras, Linear and Multilinear Algebra, 61, № 6, 811 – 830 (2013), https://doi.org/10.1080/03081087.2012.709244 DOI: https://doi.org/10.1080/03081087.2012.709244

Published
21.04.2021
How to Cite
Ashraf, M., and A. Jabeen. “Characterizations of Additive $\xi$-Lie Derivations on Unital Algebras”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 4, Apr. 2021, pp. 455 -66, doi:10.37863/umzh.v73i4.838.
Section
Research articles