Semigroup of weak endomorphisms of a partial equivalence relationship
Abstract
UDC 512.53
We study the weak endomorphism semigroup of a partial equivalence relation. We describe necessary and sufficient conditions for the existence of these endomorphisms and, in general, endotopisms. We establish the conditions under which the set of all idempotents of the weak endomorphism semigroup of a strict partial equivalence is its subsemigroup, as well as the conditions of regularity and coregularity of the weak endomorphism semigroup. In terms of the wreath product of a symmetric transformation semigroup and a small category, we describe a faithful representation of the weak endomorphism semigroup of an arbitrary relation of a strict partial equivalence.
References
M. Petrich, The semigroup of endomorphisms of a linear manifold, Duke Math. J., 63, 145–152 (1969).
B. M. Schein, B. Teclezghi, Endomorphisms of finite symmetric inverse semigroups, J. Algebra, 198, № 1, 300–310 (1997).
D. B. Li, V. H. Fernandes, Endomorphisms of semigroups of oriented transformations, Semigroup Forum, 106, 184–210 (2023).
J. Araujo, J. Konieczny, Automorphisms of endomorphism monoids of relatively free bands, Proc. Edinb. Math. Soc., 50, 1–21 (2007).
U. Knauer, M. Nieporte, Endomorphisms of graphs I. The monoid of strong endomorphisms, Arch. Math., 52, 607–614 (1989).
E. A. Bondar, Yu. V. Zhuchok, Semigroups of strong endomorphisms of infinite graphs and hypergraphs, Ukr. Math. J., 65, № 6, 823–834 (2013).
E. A. Bondar, Yu. V. Zhuchok, Representations of the strong endomorphism monoid of finite $n$-uniform hypergraphs, J. Math. Sci., 201, № 4, 421–430 (2014).
M. Böttcher, U. Knauer, Endomorphism spectra of graphs, Discrete Math., 109, 45–57 (1992).
Yu. V. Zhuchok, Endomorphism semigroups of 2-nilpotent binary relations, Fundam. Prikl. Mat., 14, № 6, 75–83 (2008); J. Math. Sci., 164, № 1, 49–55 (2010).
Sr. Arworn, U. Knauer, S. Leeratanavalee, Locally strong endomorphisms of paths, Discrete Math., 308, 2525–2532 (2008).
Sr. Arworn, An algorithm for the numbers of endomorphisms on paths, Discrete Math., 309, 94–103 (2009).
U. Knauer, N. A. Pipattanajinda, A formula for the number of weak endomorphisms on paths, Algebra and Discrete Math., 25, № 2, 270–279 (2018).
Yu. V. Zhuchok, The monoid of endomorphisms of disconnected hypergraphs, Algebra and Discrete Math., 16, № 1, 134–150 (2013).
V. A. Molchanov, The structure of isomorphisms of universal hypergraphical automata, J. Math. Sci., 237, № 3, 432–444 (2019).
Yu. Zhuchok, O. Toichkina, The endotopism semigroups of a partial equivalence relation, Sib. Math. J., 62, 1039–1049 (2021).
Yu. V. Zhuchok, Endotypes of equivalence relations, Quasigroups and Related Systems, 22, 295–300 (2014).
О. Тоічкіна, Ендотипи деяких часткових відношень еквівалентності, Наук. вісн. Ужгород. ун-ту, 2, 122–128 (2017).
Yu. Zhuchok, O. Toichkina, Endotypes of partial equivalence relations, Semigroup Forum, 103, № 3, 966–975 (2021).
Yu. Zhuchok, E. Toichkina, The endotopism semigroups of an equivalence relation, Sb. Math., 205, № 5, 646–662 (2014).
Yu. Zhuchok, E. Toichkina, Correspondences of the semigroup of endomorphisms of an equivalence relation, Math. Notes, 97, № 2, 201–212 (2015).
О. Тоічкіна, Ендоспектр відношень еквівалентності, Мат. студії, 46, № 1, 3–12 (2016).
Б. В. Попов, Напівгрупи ендотопізмів $, $-арних відношень, Учен. зап. ЛНПУ ім. О. Герцена, 274, 184–201 (1965).
В. А. Дудек, В. С. Трохименко, Алгебри Менгера багатомісних функцій, Chişinǎu, S.n. (2006).
А. H. Clifford, G. B. Preston, The algebraic theory of semigroups, vol. 1, Amer. Math. Soc, Providence, Rhode Island (1964).
T. Е. Hall, On orthodox semigroups and uniform and antiuniform bands, J. Algebra, 16, 204–217 (1970).
G. Bijev, K. Todorov, Coregular semigroups, Notes on Semigroups, 6, DM 80, 4, Karl Marx Univ. Econom., Budapest (1980), p. 1–11.
M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, acts and categories, with apllication to wreath product and graphs, Walter de Gruyter, New York, Berlin (2000).
Copyright (c) 2024 Юрій Володимирович Жучок
This work is licensed under a Creative Commons Attribution 4.0 International License.