On the application of the averaging method to one problem of optimal control with unfixed time
Abstract
UDC 517.9
We consider the problem of optimal control for a system of differential equations with rapidly oscillating coefficients and a coercive target functional. The final time is not fixed. It is defined as the first time of hitting of a given closed bounded subset of the phase space by the phase point. The solvability of this problem is proved, and the convergence of the optimal solutions of the original problem to the optimal process of the problem with averaged parameters is justified.
References
N. N. Bogoliubov, Yu. A. Mitropolsky, Asymplotic method in the theory of nonlinear oscillations, Hindustan Publ. Corp., Dehli (1961).
A. M. Samoilenko, Averaging method in systems with tremors, Math. Phys., 9, 101–117 (1971).
I. I. Gikhman, A. V. Skorokhod, Stochastic differential equations, Springer (1972). DOI: https://doi.org/10.1007/978-3-642-88264-7_7
E. F. Tsarkov, Random perturbations of functional differential equations, Zinolue, Riga (1989).
N. Moiseev, F. Chernousko, Asymptotic method in the theory of optimal control, IEEE Trans. Automat. Control, 26, № 5, 993–1000 (1981). DOI: https://doi.org/10.1109/TAC.1981.1102773
V. A. Plotnikov, R. P. Ivanov, N. M. Kitanov, Method of averaging for impulsive differential equations, Pliska Stud. Math. Bulgar., № 12, 43–55 (1998).
O. D. Kichmarenko, Schemes of complete averaging in the problem of optimal control over a functional – differential system, J. Math. Sci., 243, № 3, 421–432 (2019). DOI: https://doi.org/10.1007/s10958-019-04548-8
A. G. Nakonechnyi, E. A. Kapustian, A. A. Chikrii, Control of impulse systems in conflict situation, J. Automat. and Inform. Sci., 51, № 9, 1–11 (2019). DOI: https://doi.org/10.1615/JAutomatInfScien.v51.i9.10
T. V. Nosenko, O. M. Stanzhyts'kyi, Averaging method in some problems of optimal control, Nonlinear Oscillations, 11, № 4, 539–547 (2008). DOI: https://doi.org/10.1007/s11072-009-0049-5
A. N. Stanzhitskii, T. V. Dobrodzii, Study of optimal control problems on the half-line by the averaging method, Different. Equat., 47, № 2, 264–277 (2011). DOI: https://doi.org/10.1134/S0012266111020121
T. V. Kovalchuk, V. V. Mohyl'ova, T. V. Shovkoplyas, Averaging method in problems of optimal control over impuls systems, J. Math. Sci. United States, 247, № 2, 314–327 (2020). DOI: https://doi.org/10.1007/s10958-020-04804-2
O. D. Kichmarenko, Application of the averaging method to optimal control problem of system with fast parameters, Int. J. Pure and Appl. Math., 115, № 1, 93–114 (2017). DOI: https://doi.org/10.12732/ijpam.v115i1.8
Copyright (c) 2024 Burak Oğul
This work is licensed under a Creative Commons Attribution 4.0 International License.