Fredholm boundary-value problem for the two-term sequential fractional differential equation

Authors

DOI:

https://doi.org/10.3842/umzh.v77i1.8611

Keywords:

boundary-value problem, sequential fractional differential equation, Caputo derivative, Moore-Penrose pseudo-inverse matrix

Abstract

UDC 517.9

We establish necessary and sufficient conditions for the solvability and the general form of the solution to the linear boundary-value problem for the two-term sequential differential equation. The following two cases are considered:  1) the sequential derivative is a combination of two fractional Caputo derivatives;  2) the sequential derivative is a combination of the ordinary derivative and the Caputo fractional derivative. 

References

J. Liouville, Memoire sur quelques questions de geometrie et de mecanique, et sur un nouveau gentre pour resoudre ces quistions, J. Éc. Polytech. Math., 13, 1–69 (1832).

M. Caputo, Lineal model of dissipation whose Q is almost frequancy independent – II, Geophys. J. Astronom. Soc., 13, № 5, 529–539 (1967); https://doi.org/10.1111/j.1365-246X.1967.tb02303.x. DOI: https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integral Equat. Oper. Theory, 71, 583–600 (2011); https://doi.org/10.1007/s00020-011-1918-8. DOI: https://doi.org/10.1007/s00020-011-1918-8

M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1, № 2, 73–85 (2015). DOI: https://doi.org/10.18576/pfda/020101

R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. and Numer. Simul., 44, 460–481 (2017); https://doi.org/10.1016/j.cnsns.2016.09.006. DOI: https://doi.org/10.1016/j.cnsns.2016.09.006

K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley & Sons, New York (1993).

I. Podlubny, Fractional differential equations, mathematics in science and engineering, vol. 198, Academic Press, New Yor etc. (1999).

K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type, Springer, Berlin, Heidelberg (2010). DOI: https://doi.org/10.1007/978-3-642-14574-2

T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional calculus with applications in mechanics: vibrations and diffusion processes, Wiley-ISTE, London, Hoboken (2014); https://doi.org/10.1002/9781118577530. DOI: https://doi.org/10.1002/9781118577530

R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59, № 5, 1586–1593 (2010); https://doi.org/10.1016/j.camwa.2009.08.039. DOI: https://doi.org/10.1016/j.camwa.2009.08.039

A. A. Chikrii, I. I. Matichin, Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann–Liouville, Caputo and Miller–Ross, J. Autom. Inf. Sci., 40, № 6, 1–11 (2008); https://doi.org/10.1615/JAutomatInfScien.v40.i6.10. DOI: https://doi.org/10.1615/JAutomatInfScien.v40.i6.10

A. О. Чикрій, В. А. Пепеляєв, О. А. Чикрій, Л. В. Барановська, Керування системами дробового порядку в умовах конфлікту та невизначеності, Проблеми керування та інформатики, 68, № 2, 30–49 (2023); https://doi.org/10.34229/1028-0979-2023-2-3. DOI: https://doi.org/10.34229/1028-0979-2023-2-3

M. Klimek, M. Błasik, Existence and uniqueness of solution for a class of nonlinear sequential differential equations of fractional order, Centr. Eur. J. Math., 10, 1981–1994 (2012); https://doi.org/10.2478/s11533-012-0112-9. DOI: https://doi.org/10.2478/s11533-012-0112-9

M. H. Aqlan, A. Alsaedi, B. Ahmad, J. J. Nieto, Existence theory for sequential fractional differential equations with anti-periodic type boundary conditions, Open Math., 14, № 1, 723–735 (2016); https://doi.org/10.1515/math-2016-0064. DOI: https://doi.org/10.1515/math-2016-0064

N. I. Mahmudov, M. Awadalla, K. Abuassba, Nonlinear sequential fractional differential equations with nonlocal boundary conditions, Adv. Difference Equat., 2017, 319 (2017); https://doi.org/10.1186/s13662-017-1371-3. DOI: https://doi.org/10.1186/s13662-017-1371-3

H. Zhang, Y. Li, J. Yang, New sequential fractional differential equations with mixed-type boundary conditions, J. Funct. Spaces, 2020, Article 6821637, 1–9 (2020); https://doi.org/10.1155/2020/6821637. DOI: https://doi.org/10.1155/2020/6821637

S. Gao, R. Wu, C. Li, The existence and uniqueness of solution to sequential fractional differential equation with affine periodic boundary-value conditions, Symmetry, 14, № 7, 1389 (2022); https://doi.org/10.3390/sym14071389. DOI: https://doi.org/10.3390/sym14071389

J. R. L. Webb, Compactness of nonlinear integral operators with discontinuous and with singular kernels, J. Math. Anal. and Appl., 509, № 2, Article 126000 (2022); https://doi.org/10.1016/j.jmaa.2022.126000. DOI: https://doi.org/10.1016/j.jmaa.2022.126000

О. А Бойчук, В. А. Ферук, Крайова задача для багаточленного диференціального рівняння дробового порядку з похідною Капуто, Буковин. мат. журн., 11, № 2, 85–92 (2023); https://doi.org/10.31861/bmj2023.02.08. DOI: https://doi.org/10.31861/bmj2023.02.08

B. Bonilla, M. Rivero, J. J. Trujillo, On systems of linear fractional differential equations with constant coefficients, Appl. Math. and Comput., 187, № 1, 68–78 (2007); https://doi.org/10.1016/j.amc.2006.08.104. DOI: https://doi.org/10.1016/j.amc.2006.08.104

O. A. Boichuk, V. A. Feruk, Fredholm boundary-value problem for the system of fractional differential equations, Nonlinear Dyn., 111, 7459–7468 (2023); https://doi.org/10.1007/s11071-022-08218-4. DOI: https://doi.org/10.1007/s11071-022-08218-4

O. A. Boichuk, V. A. Feruk, Linear boundary-value problems for weakly singular integral equations, J. Math. Sci., 247, 248–257 (2020); https://doi.org/10.1007/s10958-020-04800-6. DOI: https://doi.org/10.1007/s10958-020-04800-6

O. A. Boichuk, V. A. Feruk, Boundary-value problems for weakly singular integral equations, Discrete and Contin. Dyn. Syst. Ser. B, 27, № 3, 1379–1395 (2022); https://doi.org/10.3934/dcdsb.2021094. DOI: https://doi.org/10.3934/dcdsb.2021094

A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary value problems, VSP, Utrecht, Boston (2004); 2nd ed., Walter de Gruyter GmbH & Co KG (2016); https://doi.org/10.1515/9783110378443. DOI: https://doi.org/10.1515/9783110378443

Published

25.03.2025

Issue

Section

Research articles

How to Cite

Boichuk, O., and V. Feruk. “Fredholm Boundary-Value Problem for the Two-Term Sequential Fractional Differential Equation”. Ukrains’kyi Matematychnyi Zhurnal, vol. 77, no. 1, Mar. 2025, pp. 3-13, https://doi.org/10.3842/umzh.v77i1.8611.