Existence of three weak solutions for fourth-order elastic beam equations on the whole space

  • M. R. H. Tavani Ramhormoz Branch, Islamic Azad Univ., Iran
Keywords: Multiplicity results, Non-trivial solution, Critical point theory, Variational methods

Abstract

UDC 517.9

Multiplicity results for a perturbed fourth-order problem on the real line with a perturbed nonlinear term depending on one real parameter is investigated.
Our approach is based on variational methods and critical point theory which are obtained in [G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75, 2992-3007 (2012)].

References

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75, № 5, 2992 – 3007 (2012), https://doi.org/10.1016/j.na.2011.12.003 DOI: https://doi.org/10.1016/j.na.2011.12.003

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, SpringerScience+Business Media, LLC (2011), https://doi.org/10.1007/978-0-387-70914-7. DOI: https://doi.org/10.1007/978-0-387-70914-7

G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Different. Equat., 244, № 12, 3031 – 3059, (2008), https://doi.org/10.1016/j.jde.2008.02.025 DOI: https://doi.org/10.1016/j.jde.2008.02.025

G. Bonanno, B. Di Bella, A boundary-value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343, № 2, 1166 – 1176 (2008), https://doi.org/10.1016/j.jmaa.2008.01.049 DOI: https://doi.org/10.1016/j.jmaa.2008.01.049

G. Bonanno, B. Di Bella, Infinitely many solutions for a fourth-order elastic beam equations, Nonlinear Different. Equat. and Appl., 18, № 3, 357 – 368 (2011), https://doi.org/10.1007/s00030-011-0099-0 DOI: https://doi.org/10.1007/s00030-011-0099-0

G. Bonanno, B. Di Bella, D. O’Regan, Non-trivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. and Appl., 62, № 4, 1862 – 1869 (2011), https://doi.org/10.1016/j.camwa.2011.06.029 DOI: https://doi.org/10.1016/j.camwa.2011.06.029

V. I. Burenkov, Sobolev spaces on domains, Vol. 137, Teubner, Verlagsgesellschaft mbH, Stuttgart, (1998), https://doi.org/10.1007/978-3-663-11374-4 DOI: https://doi.org/10.1007/978-3-663-11374-4

G. Han, Z. Xu, Multiple solutions of some nonlinear fourth-order beam equations, Nonlinear Anal., 68, № 12, 3646 – 3656 (2008), https://doi.org/10.1016/j.na.2007.04.007 DOI: https://doi.org/10.1016/j.na.2007.04.007

X.-L. Liu, W.-T. Li, Existence and multiplicity of solutions for fourth-order boundary-values problems with parameters, J. Math. Anal. and Appl., 327, № 1, 362 – 375 (2007), https://doi.org/10.1016/j.jmaa.2006.04.021 DOI: https://doi.org/10.1016/j.jmaa.2006.04.021

F. Wang, Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Boundary Value Problems, 2012:6, 9 pp. (2012), https://doi.org/10.1186/1687-2770-2012-6 DOI: https://doi.org/10.1186/1687-2770-2012-6

Published
24.12.2020
How to Cite
Tavani , M. R. H. “Existence of Three Weak Solutions for Fourth-Order Elastic Beam Equations on the Whole Space”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 12, Dec. 2020, pp. 1697-0, doi:10.37863/umzh.v72i12.881.
Section
Research articles