Differential and integral equations for Legendre – Laguerre based hybrid polynomials

Authors

  • S. Khan Aligarh Muslim Univ., India
  • M. Riyasat Zakir Hussain College Eng. and Technology, Aligarh Muslim Univ., India
  • Sh. A. Wani Univ. Kashmir, Srinagar, India

DOI:

https://doi.org/10.37863/umzh.v73i3.894

Keywords:

Legendre-Laguerre polynomials, Appell polynomials, Legendre-Laguerre-Appell polynomials, Recurrence relations, Differential equations, Integral equations

Abstract

UDC 517.9

 In this article, a hybrid family of three-variable Legendre – Laguerre – Appell polynomials is explored and their properties including the series expansions, determinant forms, recurrence relations, shift operators, followed by differential, integro-differential and partial differential equations are established.
The analogous results for the three-variable Hermite – Laguerre – Appell polynomials are deduced. Certain examples in terms of Legendre – Laguerre – Bernoulli, –E uler and – Genocchi polynomials are constructed to show the applications of main results. A further investigation is performed by deriving homogeneous Volterra integral equations for these polynomials and for their relatives.


Author Biography

  • S. Khan, Aligarh Muslim Univ., India




References

L. C. Andrews, Special functions for engineers and applied mathematicians, Macmillan Publ. Comp., New York (1985).

P. Appell, Sur une classe de polynˆomes, Ann. Sci. ´ Ecole Norm. Sup´er., 9, № 2, 119 – 144 (1880).

P. Appell, J. Kamp´e de F´eriet, Fonctions Hyperg´eom´etriques et Hypersph´eriques: Polynˆomes d’ Hermite, Gauthier- Villars, Paris (1926).

S. Araci, M. Acikgoz, H. Jolany, Y. He, Identities involving q-Genocchi numbers and polynomials, Notes Number Theory and Discrete Math., 20, 64 – 74 (2014).

F. A. Costabile, F. Dell’Accio, M. I. Gualtieri, A new approach to Bernoulli polynomials, Rend. Mat. Appl., 26, № 1, 1 – 12 (2006).

F. A. Costabile, E. Longo, A determinantal approach to Appell polynomials, J. Comput. and Appl. Math., 234, № 5, 1528 – 1542 (2010)б https://doi.org/10.1016/j.cam.2010.02.033 DOI: https://doi.org/10.1016/j.cam.2010.02.033

G. Dattoli, Hermite – Bessel and Laguerre – Bessel functions: a by-product of the monomiality principle, Adv. Spec. Funct. and Appl. (Melfi, 1999), Proc. Melfi Sch. Adv. Top. Math. Phys., 1, 147 – 164, (2000).

G. Dattoli, C. Cesarano, D. Sacchetti, A note on the monomiality principle and generalized polynomials, J. Math. Anal. and Appl., 227, 98 – 111 (1997).

G. Dattoli, P. E. Ricci, A note on Legendre polynomials, Int. J. Nonlinear Sci. and Numer. Simul., 2, 365 – 370 (2001), https://doi.org/10.1515/IJNSNS.2001.2.4.365 DOI: https://doi.org/10.1515/IJNSNS.2001.2.4.365

G. Dattoli, A. Torre, Operational methods and two variable Laguerre polynomials, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 132, 1 – 7 (1998).

A. Erd´elyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vol. III, McGraw-Hill Book Comp., New York etc. (1955).

M. X. He, P. E. Ricci, Differential equation of Appell polynomials via the factorization method, J. Comput. and Appl. Math., 139, 231 – 237 (2002), https://doi.org/10.1016/S0377-0427(01)00423-X DOI: https://doi.org/10.1016/S0377-0427(01)00423-X

L. Infeld, T. E. Hull, The factorization method, Rev. Mod. Phys., 23, 21 – 68 (1951), https://doi.org/10.1103/revmodphys.23.21 DOI: https://doi.org/10.1103/RevModPhys.23.21

J. Sandor, B. Crstici, Handbook of number theory, vol. II, Kluwer Acad. Publ. Dordrecht (2004), https://doi.org/10.1007/1-4020-2547-5 DOI: https://doi.org/10.1007/1-4020-2547-5

Downloads

Published

19.03.2021

Issue

Section

Research articles

How to Cite

Khan, S., et al. “Differential and Integral Equations for Legendre – Laguerre Based Hybrid Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, vol. 73, no. 3, Mar. 2021, pp. 408-24, https://doi.org/10.37863/umzh.v73i3.894.