$S$-colocalization and Adams cocompletion



UDC 512

A relationship between the $S$-colocalization of an object and the  Adams cocompletion of the same object in a complete small $\mathscr{U}$-category ($\mathscr{U}$ is a fixed Grothendieck universe)   is established, together with a specific set of morphisms $S.$


J. F. Adams, Idempotent functors in homotopy theory, Manifolds, Conf. Univ. Tokyo Press, Tokyo (1973).

J. F. Adams, Stable homotopy and generalised homology, Univ. Chicago Press, Chicago and London (1974).

J. F. Adams, Localization and completion, Lect. Notes Math., Univ. Chicago (1975).

A. Behera, S. Nanda, Mod-C Postnikov approximation of a $1$-connected space, Canad. J. Math., 39, № 3, 527–543 (1987).

A. Behera, S. Nanda, Cartan–Whitehead decomposition as Adams cocompletion, J. Austral. Math. Soc. A, 42, 223–226 (1987).

A. K. Bousfield, The localization of spaces with respect to homology, Topology, 14, 133–150 (1975).

A. Deleanu, A. Frei, P. Hilton, Generalized Adams completions, Cah. Top. Géom. Différent. Catég., 15, № 1, 61–82 (1974).

A. Deleanu, Existence of the Adams completion for objects of complete categories, J. Pure and Appl. Algebra, 6, № 1, 31–39 (1975).

D. S. Dummit, R. M. Foote, Abstract algebra, John Wiley and Sons, Inc., Hoboken, NJ (2004).

W. G. Dwyer, Localizations, Axiomatic, Enriched and Motivic Homotopy Theory, Kluwer, Proc. NATO ASI, 3–28 (2004).

S. Nanda, A note on the universe of a category of fractions, Canad. Math. Bull., 23, № 4, 425–427 (1980).

H. Schubert, Categories, Springer-Verlag, New York (1972).

How to Cite
Choudhury, S. B., and A. Behera. “$S$-Colocalization and Adams Cocompletion”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 8, Aug. 2023, pp. 1133 -8, doi:10.3842/umzh.v75i8.916.
Research articles