Some generalisation of the shadow problem in the Lobachevsky space
Abstract
UDC 514.13, 515.12, 513.83, 517.5
We consider the problem of shadow in the Lobachevsky space.
This problem can be treated as the problem of finding the conditions that ensure that the points belong to the generalized convex hull of a family of sets.
We determine the boundary values of parameters, for which the same configurations of balls ensure that the point belongs to a generalized convex hull of balls in the Euclidean and hyperbolic spaces.
In addition to balls, we consider families of horoballs, as well as combinations of balls and horoballs.
References
G. Khudajberganov, Ob odnorodno-polinomial`no vy`pukloj obolochke ob`edineniya sharov, Dep. v VINITI, 21, 1772 – 1185 (1982).
Yu. B. Zelinskij, I. Yu. Vy`govskaya, Kh. K. Dakkhil, Zadacha o teni i smezhny`e zadachi, Proc. Int. Geom. Cent., 9, № 3-4, 50 – 58 (2016).
I. Yu. Vy`govskaya, Yu. B. Zelinskij, M. V. Stefanchuk, Obobshhenno vy`pukly`e mnozhestva i zadacha o teni, Ukr. mat. zhurn., 67, № 12, 1658 – 1666 (2015).
Yu. B. Zelinskij, M. V. Stefanchuk, Uzagal`nennya zadachi pro tin, Ukr. mat. zhurn., 68, № 6, 757 – 762 (2016).
Y. B. Zelinskii, Generalized convex envelopes of sets and the problem of shadow , J. Math. Sci., 211, № 5, 710 – 717 (2015), https://doi.org/10.1007/s10958-015-2626-8 DOI: https://doi.org/10.1007/s10958-015-2626-8
Y. B. Zelinskii, Problem of shadow (complex case), Adv. Math., 5, № 1, 1 – 5 (2016).
Y. B. Zelinskii, The problem of the shadows>, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform., ´66, № 1, 37 – 42 (2016).
Yu. B. Zelinskij, Zadacha o teni dlya semejstva mnozhestv, Zb. pracz` In-tu matematiki NAN Ukrayini, 12, 197 – 204 (2015).
Yu. B. Zelinskij, I. Yu. Vy`govskaya, M. V. Stefanchuk, Zadacha o teni, Dopov. Nats. Akad. Nauk Ukr., № 5, 15 – 19 (2015).
T. M. Osipchuk, M. V. Tkachuk, Zadacha o teni dlya oblastej v evklidovy`kh prostranstvakh, Ukr. mat. visn., 13, № 4, 532 – 542 (2016).
M. V. Tkachuk, T. M. Osipchuk, Zadacha o teni dlya e`llipsoida vrashheniya, Zb. pracz` In-tu matematiki NAN Ukrayini, 12, № 3, 243 – 250 (2015).
Zh. Kajdasov, E. V. Shikin, Ob izometricheskom pogruzhenii v $E^3$ vy`pukloj oblasti ploskosti Lobachevskogo, soderzhashhej dva orikruga, Mat. zametki, 39, № 4, 612 – 617 (1986).
B. A. Rozenfel`d, Neevklidovy` prostranstva, Nauka, Moskva (1969).
N. M. Nestorovich, Geometricheskie postroeniya v ploskosti Lobachevskogo, Gostekhteorizdat, Moskva; Leningrad (1951).
A. V. Kostin, Zadacha o teni v prostranstve Lobachevskogo, Ukr. mat. zhurn., 70, № 11, 1525 – 1532 (2018).
A. V. Kostin, I. K. Sabitov, Smarandache theorem in hyperbolic geometry, Math. Phys., Anal. and Geom., 10, № 2, 221 – 232 (2014).
A. V. Kostin, Ob asimptoticheskikh liniyakh na psevdosfericheskikh poverkhnostyakh, Vladikavkaz. mat. zhurn., 21, № 1, 16 – 26 (2019).
Copyright (c) 2021 Andrey Kostin
This work is licensed under a Creative Commons Attribution 4.0 International License.