Description of the class of strictly differentiable finite-state isometries of the ring Z2

Authors

  • D. I. Morozov National University "Kyiv-Mohyla Academy"

DOI:

https://doi.org/10.37863/umzh.v73i9.6106

Keywords:

скінчено-становість, p-адичні числа, строга диференційованість

Abstract

UDK 512+517.98

The condition of strict differentiability is a strengthening of the concept of differentiability, which is naturally applicable to the class of p-adic functions.
In this article, we study the strict differentiability of finite-state isometries of the ring Z2.

 

References

L. Bartholdi, Z. Sunik, Some solvable automaton groups, Contemp. Math., 394, 11 – 29 (2006), https://doi.org/10.1090/conm/394/07431 DOI: https://doi.org/10.1090/conm/394/07431

R. I. Grigorchuk, V. V. Nekrashevich, V. I. Sushchanskii, Automata, dynamical systems and groups, Proc. Steklov Inst. Math., 231, 128 – 203 (2000).

N. Kobly`cz, p-Ady`chesky`e chy`sla,p-ady`chesky`j analy`z y` dzeta-funkcy`y`, My`r, Moskva (1982).

D. I. Morozov, Izometriyi ta sty`skayuchi funkcziyi kil`cya Z2, Visn. Zaporiz. nacz. un-tu, № 1, 90 – 97 (2014).

D. I. Morozov, Izometry`chnist` polinomiv nad kil`cem czily`x 2-ady`chny`x chy`sel, Nauk. zap. NaUKMA. Fiz.-mat. nauky`, 113, 13 – 15 (2011).

C. Weisman, On p-adic differentiability, J. Number Theory, 9, 79 – 86 (1977), https://doi.org/10.1016/0022-314X(77)90052-X DOI: https://doi.org/10.1016/0022-314X(77)90052-X

Published

16.09.2021

Issue

Section

Short communications

How to Cite

Morozov, D. I. “Description of the Class of Strictly Differentiable Finite-State Isometries of the Ring Z2”. Ukrains’kyi Matematychnyi Zhurnal, vol. 73, no. 9, Sept. 2021, pp. 1285-8, https://doi.org/10.37863/umzh.v73i9.6106.