Two points and $n$ th derivatives norm inequalities for analytic functions in Banach algebras

  • S. S. Dragomir College Engineering and Sci., Victoria Univ., Melbourne, Australia; School Comput. Sci. and Appl.Math., Univ. Witwatersrand, Johannesburg, South Africa
Keywords: Banach algebras, Ostrowski inequality, Norm inequalities, Analytic functional calculus.

Abstract

UDC 517.5

Let $\mathcal{B}$ be a unital Banach algebra, let $a \in \mathcal{B},$ $G$ be a convex domain of $\mathbb{C}$ with $\sigma (a) \subset G,$ let $\alpha, \beta \in G,$ and let $f \colon G \rightarrow \mathbb{C}$ be analytic on $G.$
By using the analytic functional calculus, we obtain among others the following result:
\begin{gather*}
\left\| f(a) - \frac{1}{2}\sum_{k=0}^{n}\frac{1}{k!}\left[
f^{(k) }(\alpha) (a-\alpha)
^{k}+(-1)^{k}f^{(k) }(\beta) (\beta-a)^{k}\right] \right\|\leq
\\
\leq \frac{1}{2(n+1) !}\left[\|a-\alpha\|
^{n+1}+\|\beta - a\|^{n+1}\right]\times
\\
\times \max \left\{\sup_{s\in [0,1] }\left\| f^{(n+1) }[(1-s) \alpha+sa] \right\|,\sup_{s\in [0,1] }\left\| f^{(n+1) }[(1-s) a+s\beta] \right\| \right\}.
\end{gather*}
Some examples for the exponential function on Banach algebras are also given.

References

M. Akkouchi, Improvements of some integral inequalities of H. Gauchman involving Taylor’s remainder, Divulg. Mat., 11, № 2, 115 – 120 (2003).

G. A. Anastassiou, Taylor – Widder representation formulae and Ostrowski, Gruss, integral means and Csiszar type inequalities, Comput. Math. Appl., 54, № 1, 9 – 23 (2007), https://doi.org/10.1016/j.camwa.2006.09.010 DOI: https://doi.org/10.1016/j.camwa.2006.09.010

G. A. Anastassiou, Ostrowski type inequalities over balls and shells via a Taylor – Widder formula, J. Inequal. Pure and Appl. Math., 8, № 4, Article 106 (2007).

M. V. Boldea, Inequalities of Čebyšev type for Lipschitzian functions in Banach algebras, An. Univ. Vest Timi¸s, Ser. Mat.-Inform., 54, № 2, 59 – 74 (2016), https://doi.org/10.1515/awutm-2016-0015 DOI: https://doi.org/10.1515/awutm-2016-0015

M. V. Boldea, S. S. Dragomir, M. Megan, New bounds for Čebyšev functional for power series in Banach algebras via a grüss-lupaş type inequality, PanAmer. Math. J., 26, № 3, 71 – 88 (2016).

J. B. Conway, A course in functional analysis, second ed., Springer-Verlag, New York (1990).

S. S. Dragomir, A counterpart of Schwarz’s inequality in inner product spaces, East Asian Math. J., 20, № 1, 1 – 10 (2004); Preprint, https://arxiv.org/abs/math/0305373

S. S. Dragomir, New estimation of the remainder in Taylor’s formula using Gruss’ type inequalities and applications, Math. Inequal. Appl., 2, № 2, 183 – 193 (1999), https://doi.org/10.7153/mia-02-16 DOI: https://doi.org/10.7153/mia-02-16

S. S. Dragomir, Inequalities for power series in Banach algebras, SUT J. Math., 50, № 1, 25 – 45 (2014). DOI: https://doi.org/10.55937/sut/1415034196

S. S. Dragomir, Inequalities of Lipschitz type for power series in Banach algebras, Ann. Math. Sil., № 29, 61 – 83 (2015), https://doi.org/10.1515/amsil-2015-0006 DOI: https://doi.org/10.1515/amsil-2015-0006

S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Austral. J. Math. Anal. and Appl., 14, № 1, Article 1 (2017).

S. S. Dragomir, M. V. Boldea, M. Megan, New norm inequalities of Čebyšev type for power series in Banach algebras, Sarajevo J. Math., 11, № 2, 253 – 266 (2015), https://doi.org/10.5644/sjm DOI: https://doi.org/10.5644/SJM

S. S. Dragomir, M. V. Boldea, C. Bu¸se, M. Megan, Norm inequalities of Čebyšev type for power series in Banach algebras, J. Inequal. Appl., 2014, Article 294 (2014), https://doi.org/10.1186/1029-242X-2014-294 DOI: https://doi.org/10.1186/1029-242X-2014-294

S. S. Dragomir, M. V. Boldea, M. Megan, Further bounds for Čebyšev functional for power series in Banach algebras via Grüss-Lupaş type inequalities for $p$-norms, Mem. Grad. Sch. Sci. Eng. Shimane Univ. Ser. B, Math., 49, 15 – 34 (2016).

S. S. Dragomir, M. V. Boldea, M. Megan, Inequalities for Chebyshev functional in Banach algebras, Cubo, 19, № 1, 53 – 77 (2017), https://doi.org/10.4067/s0719-06462017000100004 DOI: https://doi.org/10.4067/S0719-06462017000100004

S. S. Dragomir, H. B. Thompson, A two points Taylor’s formula for the generalised Riemann integral, Demonstr. Math., 43, № 4, 827 – 840 (2010). DOI: https://doi.org/10.1515/dema-2010-0410

H. Gauchman, Some integral inequalities involving Taylor’s remainder. I, J. Inequal. Pure and Appl. Math., 3, № 2, Article 26 (2002).

H. Gauchman, Some integral inequalities involving Taylor’s remainder. II, J. Inequal. Pure and Appl. Math., 4, № 1, Article 1 (2003).

D.-Y. Hwang, Improvements of some integral inequalities involving Taylor’s remainder, J. Appl. Math. and Comput., 16, № 1-2, 151 – 163 (2004), https://doi.org/10.1007/BF02936158 DOI: https://doi.org/10.1007/BF02936158

A. I. Kechriniotis, N. D. Assimakis, Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor’s formula, J. Inequal. Pure and Appl. Math., 7, № 3, Article 90 (2006).

Z. Liu, Note on inequalities involving integral Taylor’s remainder, J. Inequal. Pure and Appl. Math., 6, № 3, Article 72 (2005).

W. Liu, Q. Zhang, Some new error inequalities for a Taylor-like formula, J. Comput. Anal. and Appl., 15, № 6, 1158 – 1164 (2013). DOI: https://doi.org/10.1186/1029-242X-2013-220

N. Ujević, Error inequalities for a Taylor-like formula, Cubo, 10, № 1, 11 – 18 (2008).

Z. X. Wang, D. R. Guo, Special functions, World Sci. Publ. Co., Teaneck, NJ (1989), https://doi.org/10.1142/0653 DOI: https://doi.org/10.1142/0653

Published
04.10.2022
How to Cite
DragomirS. S. “Two Points and $n$ Th Derivatives Norm Inequalities for Analytic Functions in Banach Algebras”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 8, Oct. 2022, pp. 1086 -06, doi:10.37863/umzh.v74i8.6116.
Section
Research articles