A new approach to the construction of generalized classical polynomials

Authors

  • V. L. Makarov Inst. Math. Acad. Sci. Ukraine, Kiev

DOI:

https://doi.org/10.37863/umzh.v73i6.6256

Keywords:

.

Abstract

UDC 517.587

In this paper, we develop a new method for constructing generalized classical polynomials, primarily Hermite polynomials in the sense of A. Krall, J. Koekoek, R. Koekoek, H. Bavinck, L. Littlejohn, et al.
We construct a differential operator of infinite order whose eigenfunctions are such polynomials.
For generalized Hermite polynomials, we investigate a number of properties inherent in classical orthogonal polynomials (orthogonality, generalized Rodrigues formula, three-term recurrence relation forming a function).
The versatility of the method is revealed in constructing generalized Legendre and Chebyshev polynomials of the first kind.

References

J. Koekoek, R. Koekoek, H. Bavinck, On differential equations for Sobolev-type Laguerre polynomials, Trans. Amer. Math. Soc., 350, № 1, 347 – 393 (1998), https://doi.org/10.1090/S0002-9947-98-01993-X DOI: https://doi.org/10.1090/S0002-9947-98-01993-X

R. Koekoek, H. G. Meijer, A generalization of Laguerre polynomials, SIAM J. Math. Anal., 24, № 3, 768 – 782 (1993), https://doi.org/10.1137/0524047 DOI: https://doi.org/10.1137/0524047

A. M. Krall, Orthogonal polynomials satisfying fourth order differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 87, № 3-4, 271 – 288 (1981); https://doi.org/10.1017/S0308210500015213 DOI: https://doi.org/10.1017/S0308210500015213

L. L. Littlejohn, The Krall polynomials: a new class of orthogonal polynomials, Quaest. Math., 5, 255 – 265 (1982). DOI: https://doi.org/10.1080/16073606.1982.9632267

V. L. Makarov, Uzagal`neni polinomi Ermita, yikh vlastivosti ta diferenczial`ne rivnyannya, yake voni zadovol`nyayut`, Dop. NAN Ukrayini, № 9, 3 – 9 (2020); https://doi.org/10.15407/dopovidi2020.09.003 DOI: https://doi.org/10.15407/dopovidi2020.09.003

G. Bejtmen, A. E`rdeji, Vy`sshie transczendentny`e funkczii, t. 2, Nauka, Moskva (1974).

The on-line encyclopedia of integer sequences, founded in 1964 by N. J. A. Sloane.

H. L. Krall, Certain differential equations for Tchebysheff polynomials, Duke Math. J., 4, 705 – 718 (1938); https://doi.org/10.1215/S0012-7094-38-00462-4 DOI: https://doi.org/10.1215/S0012-7094-38-00462-4

Published

18.06.2021

Issue

Section

Research articles

How to Cite

Makarov, V. L. “A New Approach to the Construction of Generalized Classical Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, vol. 73, no. 6, June 2021, pp. 827-38, https://doi.org/10.37863/umzh.v73i6.6256.