Direct and inverse approximation theorems in the Besicovitch – Musielak – Orlicz spaces of almost periodic functions

  • S. O. Chaichenko Donbas State Pedagog. Univ., Sloviansk, Donetsk region
  • A. L. Shidlich Inst. Math. Nat. Acad. Sci. Ukraine; Nat. Univ. Life and Environmental Sci. Ukraine, Kyiv
  • T. V. Shulyk Donbas State Pedagog. Univ., Sloviansk, Donetsk region
Keywords: direct approximation theorem, inverse approximation theorem, Jackson type inequality, generalized module of smoothness

Abstract

UDC 517.5

In terms of the best approximations of functions and generalized moduli of smoothness, direct and inverse approximation theorems are proved for Besicovitch almost periodic functions whose Fourier exponent sequences have a single limit point in infinity and their Orlicz norms are finite. Special attention is paid to the study of cases when the constants in these theorems are unimprovable.

References

F. G. Abdullayev, P. Ozkartepe, V. V. Savchuk, A. L. Shidlich, Exact constants in direct and inverse approximation theorems for functions of several variables in the spaces ${mathcal S}^{p} $, Filomat, 33, № 5, 1471 – 1484 (2019), https://doi.org/10.2298/fil1905471a DOI: https://doi.org/10.2298/FIL1905471A

F. Abdullayev, S. Chaichenko, M. Imash kyzy, A. Shidlich, Direct and inverse approximation theorems in the weighted Orlicz-type spaces with a variable exponent, Turkish J. Math., 44, 284 – 299 (2020), https://doi.org/10.3906/mat-1911-3 DOI: https://doi.org/10.3906/mat-1911-3

F. Abdullayev, S. Chaichenko, A. Shidlich, Direct and inverse approximation theorems of functions in the Musielak – Orlicz type spaces, Math. Inequal. Appl., 24, № 2, 323 – 336 (2021), https://doi.org/10.7153/mia-2021-24-23 DOI: https://doi.org/10.7153/mia-2021-24-23

F. Abdullayev, A. Serdyuk, A. Shidlich, Widths of functional classes defined by majorants of generalized moduli of smoothness in the spaces ${mathcal S}^{p} $, Ukr. Math. J., 73, № 6, 841 – 858 (2021), https://doi.org/10.37863/umzh.v73i6.6432 DOI: https://doi.org/10.1007/s11253-021-01963-6

F. Abdullayev, S. Chaichenko, M. Imashkyzy, A. Shidlich, Jackson-type inequalities and widths of functional classes in the Musielak – Orlicz type spaces, Rocky Mountain J. Math., 51, № 4, 1143 – 1155 (2021), https://doi.org/10.1216/rmj.2021.51.1143 DOI: https://doi.org/10.1216/rmj.2021.51.1143

V. A. Abilov, F. V. Abilova, Problems in the approximation of $2pi$ -periodic functions by Fourier sums in the space $L_2(2pi)$, Math. Notes, 76, № 6, 749 – 757 (2004), https://doi.org/10.1023/B:MATN.0000049674.45111.71 DOI: https://doi.org/10.1023/B:MATN.0000049674.45111.71

A. G. Babenko, On exact constant in the Jackson inequality in $L^2$ , Math. Notes, 39, № 5, 355 – 363 (1986). DOI: https://doi.org/10.1007/BF01156673

V. F. Babenko, S. V. Savela, Jackson – Stechkin-type inequalities for almost periodic functions, Visn. Dnipropetrovsk Univ., 20, № 6/1, 60 – 66 (2012). DOI: https://doi.org/10.15421/241208

N. K. Bari, S. B. Stechkin, Best approximations and differential properties of two conjugate functions, Trudy Mosk. Mat. Obshch., 5, 483 – 522 (1956) (in Russian).

A. S. Besicovitch, Almost periodic functions, Dover Publ., Inc., New York (1955).

J. Boman, Equivalence of generalized moduli of continuity, Ark. Mat., 18, 73 – 100 (1980), https://doi.org/10.1007/BF02384682 DOI: https://doi.org/10.1007/BF02384682

E. A. Bredikhina, Absolute convergence of Fourier series of almost periodic functions, Dokl. Akad. Nauk SSSR, 179, № 5, 1023 – 1026 (1968) (in Russian).

E. A. Bredikhina, Almost periodic functions, Encyclopedia Math., 4, 543 – 545 (1984) (in Russian).

P. Butzer, R. Nessel, Fourier analysis and approximation, One-Dimensional Theory, Birkhauser, Basel (1971). DOI: https://doi.org/10.1007/978-3-0348-7448-9

S. Chaichenko, A. Shidlich, F. Abdullayev, Direct and inverse approximation theorems of functions in the Orlicz type spaces ${mathcal S}_M$, Math. Slovaca, 69, № 6, 1367 – 1380 (2019), https://doi.org/10.1515/ms-2017-0314 DOI: https://doi.org/10.1515/ms-2017-0314

N. I. Chernykh, On the Jackson inequality in $L^2$ , Proc. Steklov Inst. Math., 88, 75 – 78 (1967) (in Russian).

N. I. Chernykh, On the best approximation of periodic functions by trigonometric polynomials in $L^2$, Mat. Zametki, 20, № 3, 513 – 522 (1967) (in Russian).

G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press (1934).

A. I. Kozko, A. V. Rozhdestvenskii, On Jackson’s inequality for a generalized modulus of continuity in $L_2$, Sb. Math., 195, № 8, 1073 – 1115 (2004), https://doi.org/10.1070/SM2004v195n08ABEH000838 DOI: https://doi.org/10.1070/SM2004v195n08ABEH000838

B. M. Levitan, Almost periodic functions, Gosudarstv., Izdat. Techn.-Teor. Lit., Moscow (1953) (in Russian).

J. Lindenstrauss, L. Tzafriri, Classical Banach spaces I: Sequence spaces, Berlin (1977). DOI: https://doi.org/10.1007/978-3-642-66557-8

J. Musielak, Orlicz spaces and modular spaces, Springer, Berlin (1983), https://doi.org/10.1007/BFb0072210 DOI: https://doi.org/10.1007/BFb0072210

Ya. G. Pritula, Jackson’s inequality for B 2-almost periodic functions, Izv. Vyssh. Uchebn. Zaved. Mat., 8, 90 – 93 (1972) (in Russian).

Ya. G. Pritula, M. M. Yatsymirskyi, Estimates of approximations of B 2-almost periodic functions, Visn. L’viv. Univ. Ser. Mekh.-Mat., 21, 3 – 7 (1983) (in Ukrainian).

M. M. Rao, Z. D. Ren, Applications of Orlicz spaces, Marcel Dekker Inc., New York, Basel (2002), https://doi.org/10.1201/9780203910863 DOI: https://doi.org/10.1201/9780203910863

A. S. Serdyuk, A. L. Shidlich, Direct and inverse theorems on the approximation of almost periodic functions in Besicovitch – Stepanets spaces, Carpathian Math. Publ., 13, № 3, 687 – 700 (2021) (see also arXiv preprint, arXiv: 2105.06796). DOI: https://doi.org/10.15330/cmp.13.3.687-700

A. I. Stepanets, A. S. Serdyuk, Direct and inverse theorems in the theory of the approximation of functions in the space ${mathcal S}^{p} $ , Ukr. Math. J., 54, № 1, 126 – 148 (2002), https://doi.org/10.1023/A:1019701805228 DOI: https://doi.org/10.1023/A:1019701805228

A. I. Stepanets, Methods of approximation theory, VSP, Leiden, Boston (2005), https://doi.org/10.1515/9783110195286 DOI: https://doi.org/10.1515/9783110195286

M. D. Sterlin, Exact constants in inverse theorems of approximation theory, Sov. Math. Dokl., 13, 160 – 163 (1972).

A. F. Timan, Theory of approximation of functions of a real variable, Fizmatgiz, Moscow (1960) (in Russian).

M. F. Timan, Approximation and properties of periodic functions, Nauk. dumka, Kiev (2009) (in Russian).

S. B. Vakarchuk, Jackson-type inequalities with generalized modulus of continuity and exact values of the n-widths for the classes of $(psi, beta)$-differentiable functions in $L_2$. I, Ukr. Math. J., 68, № 6, 823 – 848 (2016), https://doi.org/10.1007/s11253-016-1260-z DOI: https://doi.org/10.1007/s11253-016-1260-z

S. B. Vakarchuk, V. I. Zabutnaya, Inequalities between best polynomial approximations and some smoothness characteristics in the space $L^2$ and widths of classes of functions, Math. Notes, 99, № 2, 222 – 242 (2016), https://doi.org/10.4213/mzm10506 DOI: https://doi.org/10.1134/S0001434616010259

S. N. Vasil’ev, The Jackson – Stechkin inequality in $L_2[- pi , pi ]$, Proc. Steklov Inst. Math., Suppl., 1, S243-S253 (2001) (in Russian).

V. R. Voitsekhivs’kyj, Jackson type inequalities in approximation of functions from the space ${mathcal S}^{p} $, Approx. Theory and Relat. Top., Proc. Inst. Math. Nat. Acad. Sci. Ukraine, 35, 33 – 46 (2002) (in Ukrainian).

Published
17.06.2022
How to Cite
Chaichenko S. O., ShidlichA. L., and ShulykT. V. “Direct and Inverse Approximation Theorems in the Besicovitch – Musielak – Orlicz Spaces of Almost Periodic Functions ”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 5, June 2022, pp. 701 -6, doi:10.37863/umzh.v74i5.7045.
Section
Research articles