Feynman–Kac representation of parabolic Anderson equations with general Gaussian noise

  • Xia Chen Department of Mathematics, University of Tennessee, Knoxville, TN, USA
Keywords: Feynman-Kac formula, sub-additive process, Brownian motion

Abstract

UDC 519.21

We provide the Feynman–Kac representation for the parabolic Anderson equations driven by a general Gaussian noise. As a feature of the idea, we can mention the argument of subadditivity in establishing the required exponential integrability.

References

X. Chen, Random Walk intersections: large deviations and related topics, Math. Surveys and Monogr., 157, Amer. Math. Soc., Providence (2009).

X. Chen, Quenched asymptotics for Brownian motion in generalized Gaussian potential, Ann. Probab., 42, 576–622 (2014). DOI: https://doi.org/10.1214/12-AOP830

X. Chen, A. Deya, J. Song, S. Tindel, Solving the hyperbolic model I: Skorokhod setting, (preprint).

X. Chen, Y. Hu, J. Song, F. Xing, Exponential asymptotics for time-space Hamiltonians, Ann. Inst. Henri Poincaré, 51, 1529–1561 (2015). DOI: https://doi.org/10.1214/13-AIHP588

M. Freidlin, Functional integration and partial differential equations, Ann. Math. Stud., 109, Princeton Univ. Press, Princeton, NJ (1985). DOI: https://doi.org/10.1515/9781400881598

Y. Hu, J. Huang, D. Nualart, S. Tindel, Stochastic heat equations with general multiplicative Gaussian noise: Hölder continuity and intermittency, Electron. J. Probab., 20, 1–50 (2015). DOI: https://doi.org/10.1214/EJP.v20-3316

Y. Hu, D. Nualart, J. Song, Feynman–Kac formula for heat equation driven by fractional noise, Ann. Probab., 39, 291–326 (2011). DOI: https://doi.org/10.1214/10-AOP547

Published
30.11.2023
How to Cite
ChenX. “Feynman–Kac Representation of Parabolic Anderson Equations With General Gaussian Noise”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 11, Nov. 2023, pp. 1552 -69, doi:10.3842/umzh.v75i11.7475.
Section
Research articles