Feynman–Kac representation of parabolic Anderson equations with general Gaussian noise
Abstract
UDC 519.21
We provide the Feynman–Kac representation for the parabolic Anderson equations driven by a general Gaussian noise. As a feature of the idea, we can mention the argument of subadditivity in establishing the required exponential integrability.
References
X. Chen, Random Walk intersections: large deviations and related topics, Math. Surveys and Monogr., 157, Amer. Math. Soc., Providence (2009).
X. Chen, Quenched asymptotics for Brownian motion in generalized Gaussian potential, Ann. Probab., 42, 576–622 (2014). DOI: https://doi.org/10.1214/12-AOP830
X. Chen, A. Deya, J. Song, S. Tindel, Solving the hyperbolic model I: Skorokhod setting, (preprint).
X. Chen, Y. Hu, J. Song, F. Xing, Exponential asymptotics for time-space Hamiltonians, Ann. Inst. Henri Poincaré, 51, 1529–1561 (2015). DOI: https://doi.org/10.1214/13-AIHP588
M. Freidlin, Functional integration and partial differential equations, Ann. Math. Stud., 109, Princeton Univ. Press, Princeton, NJ (1985). DOI: https://doi.org/10.1515/9781400881598
Y. Hu, J. Huang, D. Nualart, S. Tindel, Stochastic heat equations with general multiplicative Gaussian noise: Hölder continuity and intermittency, Electron. J. Probab., 20, 1–50 (2015). DOI: https://doi.org/10.1214/EJP.v20-3316
Y. Hu, D. Nualart, J. Song, Feynman–Kac formula for heat equation driven by fractional noise, Ann. Probab., 39, 291–326 (2011). DOI: https://doi.org/10.1214/10-AOP547
Copyright (c) 2023 Георгій Валентинович Рябов
This work is licensed under a Creative Commons Attribution 4.0 International License.