On some spectral properties of nonlocal boundary-value problems for nonlinear differential inclusion

  • Hameda Mohamed Alama Department of Mathematics, Faculty of Science, Alasmarya Islamic University, Libya
Keywords: nonlinear differential inclusion; homogeneous and nonhomogeneous problem; Sturm-Liouville boundary value problem; nonlocal conditions; eigenvalues; eigenfunctions

Abstract

UDC 517.9

We study the solutions to the Sturm–Liouville boundary-value problem for a nonlinear differential inclusion with nonlocal conditions. The maximal and minimal solutions are demonstrated. The analysis of eigenvalues and eigenfunctions is performed. It is discussed whether multiple solutions may exist for the inhomogeneous Sturm–Liouville boundary-value problem for differential equation with nonlocal conditions.

References

J. P. Aubin, A. Cellina, Deferential inclusions: set-valued maps and viability theory, vol. 264, Springer, Berlin (2012).

A. V. Bitsadze, A. A. Samarskii, Some elementary generalizations of linear elliptic boundary-value problems, Dokl. Akad. Nauk SSSR, 185, 739–740 (1969).

R. F. Curtain, A. J. Pritchard, Functional analysis in modern applied mathematics, Academic Press (1977).

A. M. A. EL-Sayed, M. S. EL-Azab, A. Elsaid, S. M. Helal, Eigenvalue problem for elliptic partial differential equations with nonlocal boundary conditions, J. Fract. Calc. and Appl., 5(3S), № 14, 1–11 (2014). DOI: https://doi.org/10.11948/2015013

A. M. A. El-Sayed, Sh. Atia Hagag, On some coupled systems of nonlinear differential equations, A Thesis for the Degree of Master of Science, Alex University (2011).

A. M. A. EL-Sayed, F. M. Gaafar, Stability of a nonlinear non-autonomous fractional order systems with different delays and non-local conditions, Adv. Difference Equat., 2011, Article 47 (2011); https://doi.org/10.1186/1687-1847-2011-47. DOI: https://doi.org/10.1186/1687-1847-2011-47

A. M. A. El-Sayed, E. M. A. Hamdallah, H. M. A. Alama, Multiple solutions of a Sturm–Liouville boundary-value problem of nonlinear differential inclusion with nonlocal integral conditions, AIMS Mathematics, 7, № 6, 11150–11164 (2022). DOI: https://doi.org/10.3934/math.2022624

A. M. A. El-Sayed, A. G. Ibrahim, Multivalued fractional differential equations, Appl. Math. and Comput., 68, № 1, 15–25 (1995). DOI: https://doi.org/10.1016/0096-3003(94)00080-N

A. M. A. El-Sayed, A. G. Ibrahim, Set-valued integral equation of fractional orders, Appl. Math. and Comput., 118, 113–121 (2001); https://doi.org/10.1016/S0096-3003(99)00087-9. DOI: https://doi.org/10.1016/S0096-3003(99)00087-9

V. A. Il'in, E. I. Moiseev, Nonlocal boundary-value problems of the first kind for a Sturm–Liouville operator in its differential and finite difference aspects, Different. Equat., 23, № 7, 803–810 (1987).

V. A. Il'in, E. I. Moiseev, Nonlocal boundary-value problems of the second kind for a Sturm–Liouville operator in its differential and finite difference aspects, Different. Equat., 23, № 8, 979–987 (1987).

A. N. Kolmogorov, S. V. Fomin, Itroductory real analysis, Dover Publ. Inc. (1975).

G. L. Karakostas, P. K. Palamides, Nonlocal boundary vector value problems for ordinary differential systems of higher order, Nonlinear Anal., 51, 1421–1427 (2002). DOI: https://doi.org/10.1016/S0362-546X(01)00906-3

R. B. Kellog, Uniqueness in the Schauder fixed point theorem, Proc. Amer. Math. Soc., 60, № 1, 207–210 (1976). DOI: https://doi.org/10.2307/2041143

V. Lakshmikantham, S. Leela, Differential and integral inequalities, vol. 1, Academic Press, New York, London (1969).

S. Peciulyte, O. Stikoniene, A. Stikonas, Sturm–Liouville problem for stationary differential operator with nonlocal integral boundary condition, Math. Model. and Anal., 10, № 4, 199–204 (2005). DOI: https://doi.org/10.3846/13926292.2005.9637295

S. Peciulyte, A. Stikonas, Sturm–Liouville problem for stationary differential operator with nonlocal two-point boundary conditions, Nonlinear Anal. Model. and Control, 11, № 1, 47–78 (2006). DOI: https://doi.org/10.15388/NA.2006.11.1.14764

A. Stikonas, A survey on stationary problems, Green's functions and spectrum of Sturm–Liouville problem with nonlocal boundary conditions, Nonlinear Anal. Model. and Control, 19, № 3, 301–334 (2014). DOI: https://doi.org/10.15388/NA.2014.3.1

Published
31.10.2024
How to Cite
AlamaH. M. “On Some Spectral Properties of Nonlocal Boundary-Value Problems for Nonlinear Differential Inclusion”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 10, Oct. 2024, pp. 1427 -43, doi:10.3842/umzh.v76i10.7772.
Section
Research articles