Asymptotic normality of fluctuations of the procedure of stochastic approximation with diffusive perturbation in a Markov medium

Authors

  • Ya. M. Chabanyuk

Abstract

We consider the asymptotic normality of a continuous procedure of stochastic approximation in the case where the regression function contains a singularly perturbed term depending on the external medium described by a uniformly ergodic Markov process. Within the framework of the scheme of diffusion approximation, we formulate sufficient conditions for asymptotic normality in terms of the existence of a Lyapunov function for the corresponding averaged equation.

Published

25.12.2006

Issue

Section

Research articles

How to Cite

Chabanyuk, Ya. M. “Asymptotic Normality of Fluctuations of the Procedure of Stochastic Approximation With Diffusive Perturbation in a Markov Medium”. Ukrains’kyi Matematychnyi Zhurnal, vol. 58, no. 12, Dec. 2006, pp. 1686–1692, https://umj.imath.kiev.ua/index.php/umj/article/view/3564.