New sequence spaces derived from the Catalan–Motzkin matrix and related matrix transformations
Анотація
УДК 512.6
Нові простори послідовностей, що породжені матрицею Каталана–Моцкіна та пов'язаними з нею матричними перетвореннями
Розглянуто область консервативної матриці, що містить числа Каталана та Моцкіна, у просторах послідовностей $c$ та $c_{0}.$ Крім того, наведено $\alpha$-, $\beta$- і $\gamma$-дуальні простори та деякі матричні відображення на отримані простори.
Посилання
B. Altay, F. Başar, The matrix domain and the fine spectrum of the difference operator $∆$ on the sequence space $l_{p},$ $(0≺p≺1)$, Commun. Math. Anal., 2, № 2, 1–11 (2007).
B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. and Appl., 336, 632–645 (2007). DOI: https://doi.org/10.1016/j.jmaa.2007.03.007
B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces $l_{p}$ and $l_{∞}$ I, Inf. Sci., 176, № 10, 1450–1462 (2006). DOI: https://doi.org/10.1016/j.ins.2005.05.008
F. Başar, Summability theory and its applications, Bentham Sci. Publ., İstanbul (2012).
M. Başarır, E. E. Kara, On compact operators on the Riesz $B (m)$-difference sequence spaces, Iran J. Sci. and Technol. Trans. A Sci., 35, 279–285 (2011).
M. Başarır, E. E. Kara, On some difference sequence spaces of weighted means and compact operators, Ann. Funct. Anal., 2, 114–129 (2011). DOI: https://doi.org/10.15352/afa/1399900200
M. Başarır, E. E. Kara, On the $B$-difference sequence space derived by generalized weighted mean and compact operators, J. Math. Anal. and Appl., 391, 67–81 (2012). DOI: https://doi.org/10.1016/j.jmaa.2012.02.031
M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Different. Equat., 2014, Article 163 (2014). DOI: https://doi.org/10.1186/1687-1847-2014-163
M. Candan, Almost convergence and double sequential band matrix, Acta Math. Sci., 34, № 2, 354–366 (2014). DOI: https://doi.org/10.1016/S0252-9602(14)60010-2
M. Candan, A new sequence space isomorphic to the space $l (p)$ and compact operators, J. Math. Comput. Sci., 4, № 2, 306–334 (2014).
A. Choudhary, K. Raj, M. Mursaleen, Compact operators on spaces of binomial fractional difference sequences, Math. Sci., 16, № 1, 79–85 (2022). DOI: https://doi.org/10.1007/s40096-021-00396-3
M. C. Daǧlı, A novel conservative matrix arising from Schröder numbers and its properties, Linear and Multilinear Algebra, 71, № 11, 1863–1874 (2023).
M. C. Daǧlı, A new almost convergent sequence space defined by Schröder matrix, Linear and Multilinear Algebra (2022); DOI: 10.1080/03081087.2022.2084499. DOI: https://doi.org/10.1080/03081087.2022.2084499
M. C. Daǧlı, Matrix mappings and compact operators for Schröder sequence spaces, Turkish J. Math., 46, № 6, 2304–2320 (2022). DOI: https://doi.org/10.55730/1300-0098.3270
M. C. Daǧlı, On the paranormed sequence space arising from Catalan–Motzkin matrix, Adv. Oper. Theory, 8, № 2, Article 33 (2023). DOI: https://doi.org/10.1007/s43036-023-00260-2
M. C. Daǧlı, T. Yaying, Some new paranormed sequence spaces derived by regular Tribonacci matrix, J. Anal., 31, 109–127 (2023). DOI: https://doi.org/10.1007/s41478-022-00442-w
S. Ercan, C. A. Bektaş, Some topological and geometric properties of a new BK-space derived by using regular matrix of Fibonacci numbers, Linear and Multilinear Algebra, 65, № 5, 909–921 (2017). DOI: https://doi.org/10.1080/03081087.2016.1215403
M. Et, On some difference sequence spaces, Turkish J. Math., 17, 18–24 (1993).
M. Et, M. Başarır, On some new generalized difference sequence spaces, Period. Math. Hungar., 35, № 3, 169–175 (1997).
M. Et, R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21, № 4, 377–386 (1995).
M. İlkhan, Matrix domain of a regular matrix derived by Euler totient function in the spaces $c_{0}$ and $c$, Mediterr. J. Math., 17, № 1, Article 27 (2020). DOI: https://doi.org/10.1007/s00009-019-1442-7
M. İlkhan, A new conservative matrix derived by Catalan numbers and its matrix domain in the spaces $c$ and $c_{0}$, Linear and Multilinear Algebra, 68, № 2, 417–434 (2020). DOI: https://doi.org/10.1080/03081087.2019.1635071
M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13, № 2, 527–544 (2019). DOI: https://doi.org/10.7153/oam-2019-13-40
M. İlkhan, E. E. Kara, F. Usta, Compact operators on the Jordan totient sequence spaces, Math. Methods Appl. Sci., 44, № 9, 7666–7675 (2020). DOI: https://doi.org/10.1002/mma.6537
M. İlkhan, N. Simsek, E. E. Kara, A new regular infinite matrix defined by Jordan totient function and its matrix domain in $l_{p}$, Math. Methods Appl. Sci., 44, № 9, 7622–7633 (2020). DOI: https://doi.org/10.1002/mma.6501
E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, J. Inequal. and Appl., 2013, Article 38 (2013). DOI: https://doi.org/10.1186/1029-242X-2013-38
E. E. Kara, M. Başarır, On some Euler $B^{left (mright)}$ difference sequence spaces and compact operators, J. Math. Anal. and Appl., 379, 499–511 (2011).
E. E. Kara, M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra, 64, № 11, 2208–2223 (2016). DOI: https://doi.org/10.1080/03081087.2016.1145626
M. İ. Kara, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, J. Math. Anal. and Appl., 498, № 1, Article 124925 (2021). DOI: https://doi.org/10.1016/j.jmaa.2021.124925
M. Karakaş, On the sequence spaces involving bell numbers, Linear and Multilinear Algebra (2022); DOI: 10.1080/03081087.2022.2098225. DOI: https://doi.org/10.1080/03081087.2022.2098225
M. Karakaş, M. C. Daǧlı, Some topologic and geometric properties of new Catalan sequence spaces, Adv. Oper. Theory, 8, № 1, Article 14 (2023). DOI: https://doi.org/10.1007/s43036-022-00243-9
M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60, 1299–1309 (2010). DOI: https://doi.org/10.1016/j.camwa.2010.06.010
M. Mursaleen, A note on matrix domains of Copson matrix of order $α$ and compact operators, Asian-Eur. J. Math., 15, № 7, Article 2250140 (2022). DOI: https://doi.org/10.1142/S1793557122501406
M. Mursaleen, O. H. H. Edely, Compact operators on sequence spaces associated with the Copson matrix of order $α$, J. Inequal. and Appl., 2021, Article 178 (2021). DOI: https://doi.org/10.1186/s13660-021-02713-9
M. Mursaleen, F. Başar, Sequence spaces: topic in modern summability theory, CRC Press, Taylor & Francis Group, Ser. Mathematics and Its Applications, Boca Raton etc. (2020). DOI: https://doi.org/10.1201/9781003015116
M. Mursaleen, A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. and Comput. Model., 52, № 3-4, 603–617 (2010). DOI: https://doi.org/10.1016/j.mcm.2010.04.006
M. A. Sarıgöl, Spaces of series summable by absolute Cesàro and matrix operators, Commun. Math. and Appl., 7, № 1, 11–22 (2016).
R. P. Stanley, Catalan numbers, Cambridge Univ. Press, New York (2015). DOI: https://doi.org/10.1017/CBO9781139871495
M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht, Math. Z., 154, 1–16 (1977). DOI: https://doi.org/10.1007/BF01215107
A. Wilansky, Summability through functional analysis, North-Holland Mathematics Studies, 85, Amsterdam etc. (1984).
T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular Tribonacci matrix, Math. Slovaca, 70, № 3, 697–706 (2020). DOI: https://doi.org/10.1515/ms-2017-0383
T. Yaying, M. İ. Kara, On sequence spaces defined by the domain of Tribonacci matrix in $c_{0}$ and $c$, Korean J. Math., 29, № 1, 25–40 (2021).
T. Yaying, M. İ. Kara, B. Hazarika, E. E. Kara, A study on $q$-analogue of Catalan sequence spaces, Filomat, 37, № 3, 839–850 (2023). DOI: https://doi.org/10.2298/FIL2303839Y
Авторські права (c) 2024 Muhammet Cihat Dağlı
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.