Solvability conditions of a nonlocal boundary value problem for a differential-operator equation with nonlinearity in a refined Sobolev scale of spaces of functions of several real variables

  • V. S. Il’kiv Uniwersytet Narodowy «Politechnika Lwowska»
  • N. I. Strap Uniwersytet Narodowy «Politechnika Lwowska» https://orcid.org/0000-0002-4009-8343
  • I. I. Volyanska Uniwersytet Narodowy «Politechnika Lwowska»

Abstract

UDC 517.946+511.37

We investigate the solvability of a nonlocal boundary value problem for a differential equation with nonlinearity. Using the Nash–Mozer iteration scheme, we establish conditions of solvability of the problem in the Hörmander spaces of functions of several real variables that form a refined Sobolev scale.

Author Biography

I. I. Volyanska , Uniwersytet Narodowy «Politechnika Lwowska»

 

 

 

References

Б. Й. Пташник, В. С. Iлькiв, I. Я. Кмiть, В. М. Полiщук. Нелокальні крайові задачі для рівнянь з частинними похідними (Ukrainian) [Nelokal'ni krajovi zadachi dlja rivnjan' z chastynnymy pohidnymy], Naukova dumka, Kiev 2002, 416 s. http://194.44.152.155/elib/local/sk696343.pdf

Eloe, Paul W.; Ahmad, Bashir. Positive solutions of a nonlinear $n$th order boundary value problem with nonlocal conditions. Appl. Math. Lets. 18, no. 5, 521--527 (2005). https://doi.org/10.1016/j.aml.2004.05.009

Mikhailets, V. A.; Murach, A. A. Extended Sobolev scale and elliptic operators. Ukrainian Math. J. 65, no. 3, 435--447 (2013). https://doi.org/10.1007/s11253-013-0787-5

Mikhailets, Vladimir A.; Murach, Aleksandr A. Hormander spaces, interpolation, and elliptic problems. Translated and revised from the Russian by Peter V. Malyshev. With a preface by Yu. M. Berezansky. De Gruyter Studies in Mathematics, 60. De Gruyter, Berlin, 2014. xii+297 pp. ISBN: 978-3-11-029685-3; 978-3-11-029689-1 https://doi.org/10.1515/9783110296891

.Il'kiv, Volodymyr S.; Nytrebych, Zinovii M.; Pukach, Petro Ya. Nonlocal problem with moment conditions for hyperbolic equations. Electron. J. Differential Equations. 2017, Paper No. 265, 9 pp. https://ejde.math.txstate.edu/Volumes/2017/265/ilkiv.pdf

В. С. Iлькiв, Н. I. Страп. Розв'язність нелокальної крайової задачі для системи диференціально-операторних рівнянь у шкалі просторів Соболєва та уточненій шкалі (Ukrainian) [Rozv’jaznist' nelokal'noi' krajovoi' zadachi dlja systemy dyferencial'no-operatornyh rivnjan' u shkali prostoriv Soboljeva ta utochnenij shkali] Ukrayins`kij matematichnij zhurnal. 67, no. 5, 611--624 (2014). http://umj-old.imath.kiev.ua/archiv/2015/05/umj_2015_05_9386_50458.pdf

I`l`ki`v V.S., Strap N.I`. Про розв'язність нелокальної крайової задачі для диференціально-операторного рівняння в уточненій соболєвській шкалі (Ukrainian) [Pro rozv’jaznist' nelokal'noi' krajovoi' zadachi dlja dyferencial'no-operatornogo rivnjannja v utochnenij soboljevs'kij shkali], Zbi`rnik pracz` I`n-tu matematiki NAN Ukrayini. 10, no. 2, 1--23 (2013). http://nbuv.gov.ua/j-pdf/Zpim_2014_11_2_9.pdf

Berti, Massimiliano; Bolle, Philippe. Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134, no. 2, 359--419 (2006). https://doi.org/10.1215/S0012-7094-06-13424-5

Berti, Massimiliano; Bolle, Philippe. Cantor families of periodic solutions of wave equations with $C^k$ nonlinearities. NoDEA Nonlinear Differential Equations Appl. 15, no. 1-2, 247--276 (2008). https://doi.org/10.1007/s00030-007-7025-5

Volyanska, I.; Il'kiv, V.; Strap, N. Two-point nonlocal problem for a weak nonlinear differential-operator equation. Mat. Stud. 50, no. 1, 44--59 (2018). https://doi.org/10.15330/ms.50.1.44-59

Published
30.03.2020
How to Cite
Il’kiv V. S., Strap N. I., and Volyanska I. I. “Solvability Conditions of a Nonlocal Boundary Value Problem for a Differential-Operator Equation With Nonlinearity in a Refined Sobolev Scale of Spaces of Functions of Several Real Variables”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 4, Mar. 2020, pp. 452-66, doi:10.37863/umzh.v72i4.2270.
Section
Research articles