On the criteria of transversality and disjointness of nonnegative selfadjoint extensions of nonnegative symmetric operators

Authors

  • Yu. G. Kovalev

Abstract

We propose criteria of transversality and disjointness for the Friedrichs and Krein extensions of a nonnegative symmetric operator in terms of the vectors {φj,jJ} that form a Riesz basis of the defect subspace. The criterion is applied to the Friedrichs and Krein extensions of the minimal Schr¨odinger operator A d with point potentials. We also present a new proof of the fact that the Friedrichs extension of the operator A d is a free Hamiltonian.

Downloads

Published

25.04.2018

Issue

Section

Research articles

How to Cite

Kovalev, Yu. G. “On the Criteria of Transversality and Disjointness of Nonnegative Selfadjoint Extensions of Nonnegative Symmetric Operators”. Ukrains’kyi Matematychnyi Zhurnal, vol. 70, no. 4, Apr. 2018, pp. 495-0, https://umj.imath.kiev.ua/index.php/umj/article/view/1571.