On \Sigma_t^{σ} -closed classes of finite groups
Abstract
All analyzed groups are finite. Let \sigma = \{ \sigma_i| i \in I\} be a partition of the set of all primes \mathbb{P}. If n is an integer, then the symbol \sigma (n) denotes a set \{\sigma_i| \sigma_i \cap \pi (n) \not = \emptyset\}. Integers n and m are called \sigma -coprime if \sigma (n) \cap \sigma (m) = \emptyset.Let t > 1 be a natural number and let \mathfrak{F} be a class of groups. Then we say that \mathfrak{F} is \Sigma^{\sigma}_ t -closed provided \mathfrak{F} contains each group G with subgroups A_1, ... ,A_t \in \mathfrak{F} whose indices | G : A_1| ,..., | G : A_t| are pairwise \sigma -coprime. We study \Sigma_t^{σ} -closed classes of finite groups.
Downloads
Published
25.12.2018
Issue
Section
Research articles
How to Cite
Skiba, A. N., and Chi Zhang. “On \Sigma_t^{σ} -Closed Classes of Finite Groups”. Ukrains’kyi Matematychnyi Zhurnal, vol. 70, no. 12, Dec. 2018, pp. 1707-16, https://umj.imath.kiev.ua/index.php/umj/article/view/1669.