Almost everywhere convergence of Cesàro means of two variable Walsh – Fourier series with varying parameteres

  • A. A. Abu Joudeh Inst. Math., Univ. Debrecen, Hungary
  • G. Gát Inst. Math., Univ. Debrecen, Hungary
Keywords: Cesàro means with varying parameters, two-dimensional Walsh-Fourier series, Marcinkiewicz means

Abstract

UDC 517.5

We prove that the maximal operator of some $(C , \beta_{n})$ means of cubical partial sums of two variable Walsh – Fourier series of integrable functions is of weak type $(L_1,L_1)$. Moreover, the $ (C , \beta_{n})$-means $\sigma_{2^n}^{\beta_{n}} f$ of the function $ f \in L_{1} $ converge a.e. to $f$ for $ f \in L_{1}(I^2) $, where $I$ is the Walsh group for some sequences $1> \beta_n\searrow 0$.

References

T. Akhobadze, On the convergence of generalized Ces`aro means of trigonometric Fourier series. I, Acta Math. Hungar. 115, № 1-2, 59 – 78 (2007), https://doi.org/10.1007/s10474-007-5214-7 DOI: https://doi.org/10.1007/s10474-007-5214-7

T. Akhobadze, On the generalized Ces`aro means of trigonometric Fourier series, Bull. TICMI, 18, № 1, 75 – 84 (2014).

A. Abu Joudeh, G. G´at, Almost everywhere convergence of Ces`aro means with varying parameters of Walsh – Fourier series, Miskolc Math. Notes, 19, № 1, 303 – 317 (2018).

M. I. D’yachenko, On $(C,alpha)$-summability of multiple trigonometric Fourier series, (Russian) Soobshch. Akad. Nauk Gruzin. SSR 131, № 2, 261 – 263 (1988).

G. G´at, Convergence of Marcinkiewicz means of integrable functions with respect to two-dimensional Vilenkin systems, Georgian Mathematical Journal. 11, № 3, 467 – 478 (2004).

G. G´at, On $(C,1)$ summability for Vilenkin-like systems, Stud. Math. 144, № 2, 101 – 120 (2001),https://doi.org/10.4064/sm144-2-1 DOI: https://doi.org/10.4064/sm144-2-1

U. Goginava, Marcinkiewicz-Fejer means of $d$-dimensional Walsh – Fourier series, Journal of Mathematical Analysis and Applications. 307, № 1, 206 – 218 (2005), https://doi.org/10.1016/j.jmaa.2004.11.001 DOI: https://doi.org/10.1016/j.jmaa.2004.11.001

U. Goginava, Almost everywhere convergence of $(C,alpha)$-means of cubical partial sums of $d$-dimensional Walsh – Fourier series, Journal of Approximation Theory. 141, № 1, 8 – 28 (2006), https://doi.org/10.1016/j.jat.2006.01.001 DOI: https://doi.org/10.1016/j.jat.2006.01.001

J. Marcinkiewicz, Sur une nouvelle condition pour la convergence presque partout des s´eries de Fourier (French), Annali della Scuola Normale Superiore di Pisa-Classe di Scienze. 8, № 3-4, 239 – 240 (1939), https://doi.org/10.4064/sm-8-1-78-91 DOI: https://doi.org/10.4064/sm-8-1-78-91

F. Schipp, W.R. Wade, P. Simon, J. P´al, Walsh series: an introduction to dyadic harmonic analysis, Adam Hilger, Bristol, New York (1990).

F. Weisz, Convergence of double Walsh – Fourier series and Hardy spaces., Approxim. Theory and Appl., 17, № 2, 32 – 44 (2001), https://doi.org/10.1023/A:1015553812707 DOI: https://doi.org/10.1023/A:1015553812707

L. V. Žižiašvili, A generalization of a theorem of Marcinkiewicz., Izv. Ross. Akad. Nauk. Ser. Mat., 32, № 5, 1112 – 1122 (1968).

A. Zygmund, Trigonometric series, Univ. Press, Cambridge (1959).

Published
11.03.2021
How to Cite
Abu Joudeh A. A., and GátG. “Almost Everywhere Convergence of Cesàro Means of Two Variable Walsh – Fourier Series With Varying Parameteres”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, no. 3, Mar. 2021, pp. 291 -07, doi:10.37863/umzh.v73i3.196.
Section
Research articles