Regularized integrals of motion for the Korteweg – de-Vries equation in the class of nondecreasing functions

Authors

  • K. N. Andreev
  • E. Ya. Khruslov Физ.-техн. ин-т низких температур НАН Украины, Харьков

Abstract

We study the Cauchy problem for the Korteweg–de-Vries equation in the class of functions approaching a finite- zone periodic solution of the KdV equation as x and 0 as x+. We prove the existence of infinitely many “regularized” integrals of motion for the solutions u(x,t) of the Cauchy problem, with explicit dependence on time.

Downloads

Published

25.12.2015

Issue

Section

Research articles

How to Cite

Andreev, K. N., and E. Ya. Khruslov. “Regularized Integrals of Motion for the Korteweg – De-Vries Equation in the Class of Nondecreasing Functions”. Ukrains’kyi Matematychnyi Zhurnal, vol. 67, no. 12, Dec. 2015, pp. 1587-01, https://umj.imath.kiev.ua/index.php/umj/article/view/2093.