Weighted Estimates for Multilinear Commutators of Marcinkiewicz Integrals with Bounded Kernel
Abstract
Let \( {\mu}_{\varOmega, \overrightarrow{b}} \) be a multilinear commutator generalized by the n-dimensional Marcinkiewicz integral with bounded kernel μ Ώ and let \( {b}_j\ \in Os{c_{\exp}}_{L^{r_j}} \) , 1 ≤ j ≤ m. We prove the following weighted inequalities for ω ∈ A ∞ and 0 < p < ∞: $$ {\begin{array}{cc}\hfill {\left\Vert {\mu}_{\varOmega }(f)\right\Vert}_{L^p\left(\omega \right)}\le C{\left\Vert M(f)\right\Vert}_{L^p\left(\omega \right)},\hfill & \hfill \left\Vert {\mu}_{\varOmega, \overrightarrow{b}}(f)\right\Vert \hfill \end{array}}_{L^p\left(\omega \right)}\le C{\left\Vert {M}_{L{\left( \log L\right)}^{1/r}}(f)\right\Vert}_{L^p\left(\omega \right)}. $$The weighted weak L(log L)1/r -type estimate is also established for p =1 and ω ∈ A 1.
Published
25.04.2014
How to Cite
LiuQ., and WuJ. “Weighted Estimates for Multilinear Commutators of Marcinkiewicz Integrals With Bounded Kernel”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, no. 4, Apr. 2014, pp. 538–550, https://umj.imath.kiev.ua/index.php/umj/article/view/2156.
Issue
Section
Research articles