Remarks on Certain Identities with Derivations on Semiprime Rings

Authors

  • N. Baydar
  • A. Fošner
  • R. Strašek

Abstract

Let n be a fixed positive integer, let R be a (2n)! -torsion-free semiprime ring, let α be an automorphism or an anti-automorphism of R, and let D1,D2:RR be derivations. We prove the following result: If (D21(x)+D2(x))nα(x)n=0 holds for all xЄR, then D1=D2=0. The same is true if R is a 2-torsion free semiprime ring and F(x) ° β(x) = 0 for all x ∈ R, where F(x)=(D21(x)+D2(x))α(x),xR, and β is any automorphism or antiautomorphism on R.

Published

25.10.2014

Issue

Section

Short communications

How to Cite

Baydar, N., et al. “Remarks on Certain Identities With Derivations on Semiprime Rings”. Ukrains’kyi Matematychnyi Zhurnal, vol. 66, no. 10, Oct. 2014, pp. 1436–1440, https://umj.imath.kiev.ua/index.php/umj/article/view/2236.