Numerical characteristics of the random variable associated with the expansions of real numbers by the Engel series
Abstract
It is known that any $x \in \left(0;1\right]\equiv\Omega$ has a unique Engel expansion $$ \displaystyle x=\sum\limits_{n=1}^{\infty}\frac{1}{\left(p_1(x)+1\right)\ldots \left(p_n(x)+1\right)},$$ where $p_n(x)\in\mathbb{N},$ $p_{n+1}(x)\geq p_n(x)$ for all $n \in \mathbb{N}.$ This means that $p_n(x)$ is a well-defined measurable function on the probability space $ (\Omega, \mathcal {F}, \lambda),$ where $\mathcal{F}$ is the $\sigma$-algebra of Lebesgue-measurable subsets of $\Omega$ and $\lambda$ is the Lebesgue measure.
The main subject of our research is the function $$\psi(x)=\sum_{n=1}^{\infty}\frac{1}{p_n(x)+1},$$ defined on $\Omega^*\subset\Omega,$ where $ \Omega^* $ is the convergence set of the series $\displaystyle\sum\nolimits_{n=1}^{\infty}\dfrac{1}{p_n(x)+1}.$ We prove that the function $\psi$ is defined a.e. on $(0;1]$ and $\psi$ is a random variable on the probability space $(\Omega^*, \mathcal{F^*}, \lambda),$ where $\mathcal{F^*}$ is the $\sigma$-algebra of Lebesgue-measurable subsets of $\Omega^*,$ and obtain the mathematical expectation and variance of the function $\psi.$ Also, we consider the variables $\psi_k$ as a generalization of the function $ \psi $ and calculate the mathematical expectations $M\psi_k $ of these random variables.
References
Pratsiovytyi, Mykola; Khvorostina, Yuriy. Topological and metric properties of distributions of random variables represented by the alternating Lüroth series with independent elements. Random Oper. Stoch. Equ. 21 (2013), no. 4, 385--401. https://doi.org/10.1515/rose-2013-0018 DOI: https://doi.org/10.1515/rose-2013-0018
Shallit, J. O. Metric theory of Pierce expansions. Fibonacci Quart. 24 (1986), no. 1, 22--40. https://www.fq.math.ca/Scanned/24-1/shallit.pdf
Zhykharyeva, Yulia; Pratsiovytyi, Mykola. Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers. Algebra Discrete Math. 14 (2012), no. 1, 145--160. http://admjournal.luguniv.edu.ua/index.php/adm/article/view/716/248
Барановський, О. М.; Працьовитий, М. В.; Торбiн, Г. М. Ряди Остроградського–Серпiнського–Пiрса та їхнi застосування, Наук. думка, Київ (2013) [Baranovs'kyy̆, O. M.; Prac'ovytyy̆, M. V.; Torbin, G. M. Rjady Ostrograds'kogo–Serpins'kogo–Pirsa ta ïhni zastosuvannja, Nauk. dumka, Kyïv (2013)]. https://scholar.google.com/citations?user=1V2cuyQAAAAJ&hl=en&oi=sra
Kolmogorov, A. N.; Fomin, S. V. Элементы теории функций и функционального анализа. (Russian) [Elements of the theory of functions and functional analysis] Fourth edition, revised. Izdat. "Nauka", Moscow, 1976. 543 pp. http://fulviofrisone.com/attachments/article/485/Kolmogorov-Fomin.pdf
Працьовита, I. М.; Заднiпряний, М. В. Розклади чисел в ряди Сiльвестера та їх застосування. Наук. часопис Нац. пед. ун-ту iм. М. П. Драгоманова. Фiз.-мат. науки, no. 10, 73--87 (2009) [Prac'ovyta, I. M.; Zadniprjanyy̆, M. V. Rozklady chysel v rjady Sil'vestera ta ïh zastosuvannja. Nauk. chasopys Nac. ped. un-tu im. M. P. Dragomanova. Fiz.-mat. nauky, no. 10, 73--87 (2009).].
Працьовитий, М. В.; Гетьман, Б. I. Ряди Енгеля та їх застосування. Наук. часопис Нац. пед. ун-ту iм. М. П. Драгоманова. Фiз.-мат. науки, no. 7, 105--116 (2006) [Prac'ovytyy̆, M. V.; Get'man, B. I. Rjady Engelja ta ïh zastosuvannja. Nauk. chasopys Nac. ped. un-tu im. M. P. Dragomanova. Fiz.-mat. nauky, no. 7, 105--116 (2006)].
Смирнов, В. И. Курс высшей математики, т. 5. Наука, Москва (1959) [Smirnov, V. I. Kurs vyssheĭ matematiki, t. 5. Nauka, Moskva (1959)].
Copyright (c) 2020 Микола Мороз
This work is licensed under a Creative Commons Attribution 4.0 International License.