Numerical characteristics of the random variable associated with the expansions of real numbers by the Engel series

Authors

DOI:

https://doi.org/10.37863/umzh.v72i5.2284

Abstract

It is known that any x(0;1]Ω has a unique Engel expansion x=n=11(p1(x)+1)(pn(x)+1), where pn(x)N, pn+1(x)pn(x) for all nN. This means that pn(x) is a well-defined measurable function on the probability space (Ω,F,λ), where F is the σ-algebra of Lebesgue-measurable subsets of Ω and λ is the Lebesgue measure.

 

The main subject of our research is the function ψ(x)=n=11pn(x)+1, defined on ΩΩ, where Ω is the convergence set of the series n=11pn(x)+1. We prove that the function ψ is defined a.e. on (0;1] and ψ is a random variable on the probability space (Ω,F,λ), where F is the σ-algebra of Lebesgue-measurable subsets of Ω, and obtain the mathematical expectation and variance of the function ψ. Also, we consider the  variables ψk as a generalization of the function ψ and calculate the mathematical expectations Mψk of these random variables.

References

Pratsiovytyi, Mykola; Khvorostina, Yuriy. Topological and metric properties of distributions of random variables represented by the alternating Lüroth series with independent elements. Random Oper. Stoch. Equ. 21 (2013), no. 4, 385--401. https://doi.org/10.1515/rose-2013-0018 DOI: https://doi.org/10.1515/rose-2013-0018

Shallit, J. O. Metric theory of Pierce expansions. Fibonacci Quart. 24 (1986), no. 1, 22--40. https://www.fq.math.ca/Scanned/24-1/shallit.pdf

Zhykharyeva, Yulia; Pratsiovytyi, Mykola. Expansions of numbers in positive Lüroth series and their applications to metric, probabilistic and fractal theories of numbers. Algebra Discrete Math. 14 (2012), no. 1, 145--160. http://admjournal.luguniv.edu.ua/index.php/adm/article/view/716/248

Барановський, О. М.; Працьовитий, М. В.; Торбiн, Г. М. Ряди Остроградського–Серпiнського–Пiрса та їхнi застосування, Наук. думка, Київ (2013) [Baranovs'kyy̆, O. M.; Prac'ovytyy̆, M. V.; Torbin, G. M. Rjady Ostrograds'kogo–Serpins'kogo–Pirsa ta ïhni zastosuvannja, Nauk. dumka, Kyïv (2013)]. https://scholar.google.com/citations?user=1V2cuyQAAAAJ&hl=en&oi=sra

Kolmogorov, A. N.; Fomin, S. V. Элементы теории функций и функционального анализа. (Russian) [Elements of the theory of functions and functional analysis] Fourth edition, revised. Izdat. "Nauka", Moscow, 1976. 543 pp. http://fulviofrisone.com/attachments/article/485/Kolmogorov-Fomin.pdf

Працьовита, I. М.; Заднiпряний, М. В. Розклади чисел в ряди Сiльвестера та їх застосування. Наук. часопис Нац. пед. ун-ту iм. М. П. Драгоманова. Фiз.-мат. науки, no. 10, 73--87 (2009) [Prac'ovyta, I. M.; Zadniprjanyy̆, M. V. Rozklady chysel v rjady Sil'vestera ta ïh zastosuvannja. Nauk. chasopys Nac. ped. un-tu im. M. P. Dragomanova. Fiz.-mat. nauky, no. 10, 73--87 (2009).].

Працьовитий, М. В.; Гетьман, Б. I. Ряди Енгеля та їх застосування. Наук. часопис Нац. пед. ун-ту iм. М. П. Драгоманова. Фiз.-мат. науки, no. 7, 105--116 (2006) [Prac'ovytyy̆, M. V.; Get'man, B. I. Rjady Engelja ta ïh zastosuvannja. Nauk. chasopys Nac. ped. un-tu im. M. P. Dragomanova. Fiz.-mat. nauky, no. 7, 105--116 (2006)].

Смирнов, В. И. Курс высшей математики, т. 5. Наука, Москва (1959) [Smirnov, V. I. Kurs vyssheĭ matematiki, t. 5. Nauka, Moskva (1959)].

Published

29.04.2020

Issue

Section

Research articles

How to Cite

Moroz, M. P. “Numerical Characteristics of the Random Variable Associated With the Expansions of Real Numbers by the Engel Series”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 5, Apr. 2020, pp. 658–666, https://doi.org/10.37863/umzh.v72i5.2284.