A note on S-Nakayama’s lemma

Authors

  • A. Hamed Univ. Monastir, Tunisia

Keywords:

Nakayama’s lemma, S-finite, S-w-finite

Abstract

We propose an S-version of Nakayama's lemma. Let R be a commutative ring, S a multiplicative subset of R, and M be an S-finite R-module. Also let I be an ideal of R. We show that if there exists tS such that tMIM, then
(t+a)M=0 for some tS and aI. We also give an analog of Nakayama's lemma for a w-ideal and an S-w-finite R-module, where R is an integral domain.
Thus, we generalize the result obtained by Wang and McCasland [Commun. Algebra, 25, 1285–1306 (1997)].

References

Ameri, Reza. Two versions of Nakayama lemma for multiplication modules. Int. J. Math. Math. Sci. 2004, no. 53-56, 2911--2913. doi: 10.1155/S0161171204311282

Anderson, D. D.; Dumitrescu, Tiberiu. S-Noetherian rings. Comm. Algebra 30 (2002), no. 9, 4407--4416. doi: 10.1081/AGB-120013328

Azizi, A. On generalization of Nakayama's lemma. Glasg. Math. J. 52 (2010), no. 3, 605--617. doi: 10.1017/S0017089510000467

Wang, Fanggui; McCasland, R. L. On w-modules over strong Mori domains. Comm. Algebra 25 (1997), no. 4, 1285--1306. doi: 10.1080/00927879708825920

Kim, Hwankoo; Kim, Myeong Og; Lim, Jung Wook. On S-strong Mori domains. J. Algebra 416 (2014), 314--332. doi: 10.1016/j.jalgebra.2014.06.015

Matsumura, Hideyuki. Commutative ring theory. Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986. {rm xiv}+320 pp. ISBN: 0-521-259169 doi: 10.1017/CBO9781139171762

Downloads

Published

15.01.2020

Issue

Section

Short communications

How to Cite

Hamed , A. “A Note on S-Nakayama’s Lemma”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 1, Jan. 2020, pp. 142-4, https://umj.imath.kiev.ua/index.php/umj/article/view/2332.