A note on S-Nakayama’s lemma
Keywords:
Nakayama’s lemma, S-finite, S-w-finiteAbstract
We propose an S-version of Nakayama's lemma. Let R be a commutative ring, S a multiplicative subset of R, and M be an S-finite R-module. Also let I be an ideal of R. We show that if there exists t∈S such that tM⊆IM, then
(t′+a)M=0 for some t′∈S and a∈I. We also give an analog of Nakayama's lemma for a w-ideal and an S-w-finite R-module, where R is an integral domain.
Thus, we generalize the result obtained by Wang and McCasland [Commun. Algebra, 25, 1285–1306 (1997)].
References
Ameri, Reza. Two versions of Nakayama lemma for multiplication modules. Int. J. Math. Math. Sci. 2004, no. 53-56, 2911--2913. doi: 10.1155/S0161171204311282
Anderson, D. D.; Dumitrescu, Tiberiu. S-Noetherian rings. Comm. Algebra 30 (2002), no. 9, 4407--4416. doi: 10.1081/AGB-120013328
Azizi, A. On generalization of Nakayama's lemma. Glasg. Math. J. 52 (2010), no. 3, 605--617. doi: 10.1017/S0017089510000467
Wang, Fanggui; McCasland, R. L. On w-modules over strong Mori domains. Comm. Algebra 25 (1997), no. 4, 1285--1306. doi: 10.1080/00927879708825920
Kim, Hwankoo; Kim, Myeong Og; Lim, Jung Wook. On S-strong Mori domains. J. Algebra 416 (2014), 314--332. doi: 10.1016/j.jalgebra.2014.06.015
Matsumura, Hideyuki. Commutative ring theory. Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge, 1986. {rm xiv}+320 pp. ISBN: 0-521-259169 doi: 10.1017/CBO9781139171762