Strongly statistical convergence

Authors

  • U. Kaya Bitlis Eren Univ., Turkey
  • N. D. Aral Bitlis Eren Univ., Turkey

Keywords:

convergence

Abstract

UDC 519.21

We introduce A-strongly statistical convergence for sequences of complex numbers, where A=(ank)n,kN is an infinite matrix with nonnegative entries.
A sequence (xn) is called strongly convergent to L if limnk=1ank|xkL|=0 in the ordinary sense.
In the definition of A-strongly statistical limit, we use the statistical limit instead of the ordinary limit via a convenient density.
We study some densities and show that the (ank)-strongly statistical limit is a (amnk)-strong limit, where the density of the set {mnN:nN} is equal to 1.
We introduce the notion of dense positivity for nonnegative sequences.
A nonnegative sequence (rn) is dense positive provided the limit superior of a subsequence (rmn) is positive for all (mn) with density equal to 1.
We show that the dense positivity of (rn) is a necessary and sufficient condition for the uniqueness of A-strongly statistical limit, where A=(ank) and rn=k=1ank.
Furthermore, necessary conditions for the regularity, linearity and multiplicativity of A-strongly statistical limit are established.

References

Belen, C.; Mohiuddine, S. A. Generalized weighted statistical convergence and application. Appl. Math. Comput. 219 (2013), no. 18, 9821--9826. doi: 10.1016/j.amc.2013.03.115

Connor, Jeff. On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32 (1989), no. 2, 194--198. doi: 10.4153/CMB-1989-029-3

Edely, Osama H. H.; Mursaleen, M.; Khan, Asif. Approximation for periodic functions via weighted statistical convergence. Appl. Math. Comput. 219 (2013), no. 15, 8231--8236. doi: 10.1016/j.amc.2013.02.024

Fast, H. Sur la convergence statistique. (French) Colloq. Math. 2 (1951), 241--244 (1952). doi: 10.4064/cm-2-3-4-241-244

Freedman, A. R.; Sember, J. J. Densities and summability. Pacific J. Math. 95 (1981), no. 2, 293--305. MR0632187

Fridy, J. A. On statistical convergence. Analysis 5 (1985), no. 4, 301--313. doi: 10.1524/anly.1985.5.4.301

Ghosal, Sanjoy. Generalized weighted random convergence in probability. Appl. Math. Comput. 249 (2014), 502--509. doi: 10.1016/j.amc.2014.10.056

Hamilton, H. J.; Hill, J. D. On Strong Summability. Amer. J. Math. 60 (1938), no. 3, 588--594. doi: 10.2307/2371600

Karakaya, V.; Chishti, T. A. Weighted statistical convergence. Iran. J. Sci. Technol. Trans. A Sci. 33 (2009), no. 3, 219--223 (2010). MR2848371

Maddox, I. J. Spaces of strongly summable sequences. Quart. J. Math. Oxford Ser. (2) 18 (1967), 345--355. doi: 10.1093/qmath/18.1.345

I. J. Maddox, Elements of Functional Analysis, Cambridge, UK: Cambridge Univ. Press (1970).

Mursaleen, Mohammad; Karakaya, Vatan; Ertürk, Müzeyyen; Gürsoy, Faik. Weighted statistical convergence and its application to Korovkin type approximation theorem. Appl. Math. Comput. 218 (2012), no. 18, 9132--9137. doi: 10.1016/j.amc.2012.02.068

Šalát, T. On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), no. 2, 139--150. MR0587239

Steinhaus, H. Quality control by sampling (a plea for Bayes' rule). Colloq. Math. 2 (1951), 98--108. doi: 10.4064/cm-2-2-98-108

Włodarski, L. On some strong continuous summability methods. Proc. London Math. Soc. (3) 13 1963 273--289. doi: 10.1112/plms/s3-13.1.273

Downloads

Published

15.02.2020

Issue

Section

Research articles

How to Cite

Kaya, U., and N. D. Aral. “Strongly Statistical Convergence”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 2, Feb. 2020, pp. 221-3, https://umj.imath.kiev.ua/index.php/umj/article/view/2368.