Strongly statistical convergence
Keywords:
convergenceAbstract
UDC 519.21
We introduce A-strongly statistical convergence for sequences of complex numbers, where A=(ank)n,k∈N is an infinite matrix with nonnegative entries.
A sequence (xn) is called strongly convergent to L if limn→∞∑∞k=1ank|xk−L|=0 in the ordinary sense.
In the definition of A-strongly statistical limit, we use the statistical limit instead of the ordinary limit via a convenient density.
We study some densities and show that the (ank)-strongly statistical limit is a (amnk)-strong limit, where the density of the set {mn∈N:n∈N} is equal to 1.
We introduce the notion of dense positivity for nonnegative sequences.
A nonnegative sequence (rn) is dense positive provided the limit superior of a subsequence (rmn) is positive for all (mn) with density equal to 1.
We show that the dense positivity of (rn) is a necessary and sufficient condition for the uniqueness of A-strongly statistical limit, where A=(ank) and rn=∑∞k=1ank.
Furthermore, necessary conditions for the regularity, linearity and multiplicativity of A-strongly statistical limit are established.
References
Belen, C.; Mohiuddine, S. A. Generalized weighted statistical convergence and application. Appl. Math. Comput. 219 (2013), no. 18, 9821--9826. doi: 10.1016/j.amc.2013.03.115
Connor, Jeff. On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32 (1989), no. 2, 194--198. doi: 10.4153/CMB-1989-029-3
Edely, Osama H. H.; Mursaleen, M.; Khan, Asif. Approximation for periodic functions via weighted statistical convergence. Appl. Math. Comput. 219 (2013), no. 15, 8231--8236. doi: 10.1016/j.amc.2013.02.024
Fast, H. Sur la convergence statistique. (French) Colloq. Math. 2 (1951), 241--244 (1952). doi: 10.4064/cm-2-3-4-241-244
Freedman, A. R.; Sember, J. J. Densities and summability. Pacific J. Math. 95 (1981), no. 2, 293--305. MR0632187
Fridy, J. A. On statistical convergence. Analysis 5 (1985), no. 4, 301--313. doi: 10.1524/anly.1985.5.4.301
Ghosal, Sanjoy. Generalized weighted random convergence in probability. Appl. Math. Comput. 249 (2014), 502--509. doi: 10.1016/j.amc.2014.10.056
Hamilton, H. J.; Hill, J. D. On Strong Summability. Amer. J. Math. 60 (1938), no. 3, 588--594. doi: 10.2307/2371600
Karakaya, V.; Chishti, T. A. Weighted statistical convergence. Iran. J. Sci. Technol. Trans. A Sci. 33 (2009), no. 3, 219--223 (2010). MR2848371
Maddox, I. J. Spaces of strongly summable sequences. Quart. J. Math. Oxford Ser. (2) 18 (1967), 345--355. doi: 10.1093/qmath/18.1.345
I. J. Maddox, Elements of Functional Analysis, Cambridge, UK: Cambridge Univ. Press (1970).
Mursaleen, Mohammad; Karakaya, Vatan; Ertürk, Müzeyyen; Gürsoy, Faik. Weighted statistical convergence and its application to Korovkin type approximation theorem. Appl. Math. Comput. 218 (2012), no. 18, 9132--9137. doi: 10.1016/j.amc.2012.02.068
Šalát, T. On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), no. 2, 139--150. MR0587239
Steinhaus, H. Quality control by sampling (a plea for Bayes' rule). Colloq. Math. 2 (1951), 98--108. doi: 10.4064/cm-2-2-98-108
Włodarski, L. On some strong continuous summability methods. Proc. London Math. Soc. (3) 13 1963 273--289. doi: 10.1112/plms/s3-13.1.273