Decomposition of a Hermitian matrix into a sum of a fixed number of orthoprojections

Authors

DOI:

https://doi.org/10.37863/umzh.v72i5.2378

Keywords:

Orthoprojection, Hermitian matrix, Horn inequlities, Frame.

Abstract

We prove that any Hermitian matrix, whose trace is integer and all eigenvalues lie in [1+1/(k3),k11/(k3)], is a sum of k orthoprojections. For sums of k orthoprojections, it is shown that the ratio of the number of eigenvalues not exceeding 1 to the number of eigenvalues not less than 1, taking into account the multiplicity, is not greater than k1. Examples of Hermitian matrices that satisfy the ratio for eigenvalues and, at the same time, can not be decomposed into a sum of k orthoprojections are also suggested.

References

Finite frames. Theory and applications. Edited by Peter G. Casazza and Gitta Kutyniok. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013. xvi+483 pp. ISBN: 978-0-8176-8372-6; 978-0-8176-8373-3 https://doi.org/10.1007/978-0-8176-8373-3_13 DOI: https://doi.org/10.1007/978-0-8176-8373-3_13

Calderbank, Robert; Casazza, Peter G.; Heinecke, Andreas; Kutyniok, Gitta; Pezeshki, Ali. Sparse fusion frames: existence and construction. Adv. Comput. Math. 35 (2011), no. 1, 1–31. https://doi.org/10.1007/s10444-010-9162-3 DOI: https://doi.org/10.1007/s10444-010-9162-3

Casazza, Peter G.; Fickus, Matthew; Mixon, Dustin G.; Wang, Yang; Zhou, Zhengfang. Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30 (2011), no. 2, 175–187. https://doi.org/10.1016/j.acha.2010.05.002 DOI: https://doi.org/10.1016/j.acha.2010.05.002

Leng, Jinsong; Han, Deguang. Orthogonal projection decomposition of matrices and construction of fusion frames. Adv. Comput. Math. 38 (2013), no. 2, 369–381. https://doi.org/10.1007/s10444-011-9241-0 DOI: https://doi.org/10.1007/s10444-011-9241-0

Bjørstad, Petter E.; Mandel, Jan. On the spectra of sums of orthogonal projections with applications to parallel computing. BIT 31 (1991), no. 1, 76–88. https://doi.org/10.1007/bf01952785 DOI: https://doi.org/10.1007/BF01952785

Nishio, Katsuyoshi. The structure of a real linear combination of two projections. Linear Algebra Appl. 66 (1985), 169–176. https://doi.org/10.1016/0024-3795(85)90130-2 DOI: https://doi.org/10.1016/0024-3795(85)90130-2

Ostrovs'kyj, V. L.;, Jakymenko, D. Ju. Про iснування та побудову ортоскалярних наборiв пiдпросторiв. (Ukrainian) [Pro isnuvannja ta pobudovu ortoskaljarnyh naboriv pidprostoriv]. Зб. праць Iн-ту математики НАН України [Zb. prac' In-tu matematyky NAN Ukrai'ny], 12, no. 1, 154–165 (2015). http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Zpim_2015_12_1_10

Böttcher, A.; Spitkovsky, I. M. A gentle guide to the basics of two projections theory. Linear Algebra Appl. 432 (2010), no. 6, 1412–1459. https://doi.org/10.1016/j.laa.2009.11.002 DOI: https://doi.org/10.1016/j.laa.2009.11.002

Fillmore, Peter A. On sums of projections. J. Functional Analysis 4 1969 146–152. https://doi.org/10.1016/0022-1236(69)90027-5 DOI: https://doi.org/10.1016/0022-1236(69)90027-5

Kruglyak, Stanislav; Rabanovich, Vyacheslav; Samoĭlenko, Yuriĭ. Decomposition of a scalar matrix into a sum of orthogonal projections. Linear Algebra Appl. 370 (2003), 217–225. https://doi.org/10.1016/s0024-3795(03)00390-2 DOI: https://doi.org/10.1016/S0024-3795(03)00390-2

Fulton, William. Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209–249. https://doi.org/10.1090/s0273-0979-00-00865-x DOI: https://doi.org/10.1090/S0273-0979-00-00865-X

Fulton, William. Eigenvalues of majorized Hermitian matrices and Littlewood–Richardson coefficients. Special Issue: Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Spectral Problem (Coimbra, 1999). Linear Algebra Appl. 319 (2000), no. 1-3, 23–36. https://doi.org/10.1016/s0024-3795(00)00218-4 DOI: https://doi.org/10.1016/S0024-3795(00)00218-4

Horn, Roger A.; Johnson, Charles R. Matrix analysis. Second edition. Cambridge University Press, Cambridge, 2013. xviii+643 pp. ISBN: 978-0-521-54823-6 https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.laa.2014.10.023

Kruglyak, S. A.; Rabanovich, V. I.; Samoĭlenko, Yu. S. On sums of projections. (Russian); translated from Funktsional. Anal. i Prilozhen. 36 (2002), no. 3, 20–35, Funct. Anal. Appl. 36 (2002), no. 3, 182–195 https://doi.org/10.1023/a:1020193804109 DOI: https://doi.org/10.1023/A:1020193804109

Wang, Jin Hsien. The length problem for a sum of idempotents. Linear Algebra Appl. 215 (1995), 135–159. https://doi.org/10.1016/0024-3795(93)00083-c DOI: https://doi.org/10.1016/0024-3795(93)00083-C

Wu, Pei Yuan. Additive combinations of special operators. Functional analysis and operator theory (Warsaw, 1992), 337–361, Banach Center Publ., 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994. https://doi.org/10.4064/-30-1-337-361 DOI: https://doi.org/10.4064/-30-1-337-361

Published

29.04.2020

Issue

Section

Research articles

How to Cite

Rabanovich, V. I. “Decomposition of a Hermitian Matrix into a Sum of a Fixed Number of Orthoprojections”. Ukrains’kyi Matematychnyi Zhurnal, vol. 72, no. 5, Apr. 2020, pp. 679–693, https://doi.org/10.37863/umzh.v72i5.2378.