Зображення ермітової матриці сумою фіксованого числа ортопроекторів

Автор(и)

DOI:

https://doi.org/10.37863/umzh.v72i5.2378

Ключові слова:

Ортопроектор, Ермітова матриця, Нерівності Хорна, Фрейм

Анотація

УДК 512.643, 517.98

Доведено, що ермітова матриця з цілим слідом і власними значеннями між $1+1/(k-3)$ і $k-1-1/(k-3)$ є сумою $k$ ортопроекторів. Показано, що у суми $k$ ортопроекторів відношення кількості власних значень, що менші або дорівнюють одиниці, з урахуванням кратності до кількості власних значень, які більші або дорівнюють одиниці, не перевищує $k-1$. Наведено приклади ермітових матриць, які задовольняють вказане співвідношення щодо кількості власних значень, але не є сумою $k$ ортопроекторів.

Посилання

Finite frames. Theory and applications. Edited by Peter G. Casazza and Gitta Kutyniok. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013. xvi+483 pp. ISBN: 978-0-8176-8372-6; 978-0-8176-8373-3 https://doi.org/10.1007/978-0-8176-8373-3_13 DOI: https://doi.org/10.1007/978-0-8176-8373-3_13

Calderbank, Robert; Casazza, Peter G.; Heinecke, Andreas; Kutyniok, Gitta; Pezeshki, Ali. Sparse fusion frames: existence and construction. Adv. Comput. Math. 35 (2011), no. 1, 1–31. https://doi.org/10.1007/s10444-010-9162-3 DOI: https://doi.org/10.1007/s10444-010-9162-3

Casazza, Peter G.; Fickus, Matthew; Mixon, Dustin G.; Wang, Yang; Zhou, Zhengfang. Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30 (2011), no. 2, 175–187. https://doi.org/10.1016/j.acha.2010.05.002 DOI: https://doi.org/10.1016/j.acha.2010.05.002

Leng, Jinsong; Han, Deguang. Orthogonal projection decomposition of matrices and construction of fusion frames. Adv. Comput. Math. 38 (2013), no. 2, 369–381. https://doi.org/10.1007/s10444-011-9241-0 DOI: https://doi.org/10.1007/s10444-011-9241-0

Bjørstad, Petter E.; Mandel, Jan. On the spectra of sums of orthogonal projections with applications to parallel computing. BIT 31 (1991), no. 1, 76–88. https://doi.org/10.1007/bf01952785 DOI: https://doi.org/10.1007/BF01952785

Nishio, Katsuyoshi. The structure of a real linear combination of two projections. Linear Algebra Appl. 66 (1985), 169–176. https://doi.org/10.1016/0024-3795(85)90130-2 DOI: https://doi.org/10.1016/0024-3795(85)90130-2

Ostrovs'kyj, V. L.;, Jakymenko, D. Ju. Про iснування та побудову ортоскалярних наборiв пiдпросторiв. (Ukrainian) [Pro isnuvannja ta pobudovu ortoskaljarnyh naboriv pidprostoriv]. Зб. праць Iн-ту математики НАН України [Zb. prac' In-tu matematyky NAN Ukrai'ny], 12, no. 1, 154–165 (2015). http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Zpim_2015_12_1_10

Böttcher, A.; Spitkovsky, I. M. A gentle guide to the basics of two projections theory. Linear Algebra Appl. 432 (2010), no. 6, 1412–1459. https://doi.org/10.1016/j.laa.2009.11.002 DOI: https://doi.org/10.1016/j.laa.2009.11.002

Fillmore, Peter A. On sums of projections. J. Functional Analysis 4 1969 146–152. https://doi.org/10.1016/0022-1236(69)90027-5 DOI: https://doi.org/10.1016/0022-1236(69)90027-5

Kruglyak, Stanislav; Rabanovich, Vyacheslav; Samoĭlenko, Yuriĭ. Decomposition of a scalar matrix into a sum of orthogonal projections. Linear Algebra Appl. 370 (2003), 217–225. https://doi.org/10.1016/s0024-3795(03)00390-2 DOI: https://doi.org/10.1016/S0024-3795(03)00390-2

Fulton, William. Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 209–249. https://doi.org/10.1090/s0273-0979-00-00865-x DOI: https://doi.org/10.1090/S0273-0979-00-00865-X

Fulton, William. Eigenvalues of majorized Hermitian matrices and Littlewood–Richardson coefficients. Special Issue: Workshop on Geometric and Combinatorial Methods in the Hermitian Sum Spectral Problem (Coimbra, 1999). Linear Algebra Appl. 319 (2000), no. 1-3, 23–36. https://doi.org/10.1016/s0024-3795(00)00218-4 DOI: https://doi.org/10.1016/S0024-3795(00)00218-4

Horn, Roger A.; Johnson, Charles R. Matrix analysis. Second edition. Cambridge University Press, Cambridge, 2013. xviii+643 pp. ISBN: 978-0-521-54823-6 https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1016%2Fj.laa.2014.10.023

Kruglyak, S. A.; Rabanovich, V. I.; Samoĭlenko, Yu. S. On sums of projections. (Russian); translated from Funktsional. Anal. i Prilozhen. 36 (2002), no. 3, 20–35, Funct. Anal. Appl. 36 (2002), no. 3, 182–195 https://doi.org/10.1023/a:1020193804109 DOI: https://doi.org/10.1023/A:1020193804109

Wang, Jin Hsien. The length problem for a sum of idempotents. Linear Algebra Appl. 215 (1995), 135–159. https://doi.org/10.1016/0024-3795(93)00083-c DOI: https://doi.org/10.1016/0024-3795(93)00083-C

Wu, Pei Yuan. Additive combinations of special operators. Functional analysis and operator theory (Warsaw, 1992), 337–361, Banach Center Publ., 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994. https://doi.org/10.4064/-30-1-337-361 DOI: https://doi.org/10.4064/-30-1-337-361

Завантаження

Опубліковано

29.04.2020

Номер

Розділ

Статті

Як цитувати

Рабанович, В. І. “Зображення ермітової матриці сумою фіксованого числа ортопроекторів”. Український математичний журнал, vol. 72, no. 5, Apr. 2020, pp. 679–693, https://doi.org/10.37863/umzh.v72i5.2378.