The Bojanov-Naidenov problem for the functions with non-symmetric restrictions on the oldest derivative
Abstract
For given r∈\NN, p,α,β,μ>0, we solve the
extremal problems
∫baxq±(t)dt→sup
on the set of pair (x, I) functions x\in L^r_{\infty} and
intervals I=[a,b] \subset \RR satisfying the inequalities -\beta \le x^{(r)}(t) \le \alpha for almost everywhere t \in \RR and
the both of conditions L(x_{\pm})_p \le L(\varphi_{\lambda,r}^{\alpha, \beta})_{\pm})_p, and such that \mu \left( {\rm supp}_{[a, b]} x_{+} \right) \le \mu or \mu \left( {\rm supp}_{[a, b]} x_{-} \right) \le \mu, where
L(x)_p:=\sup \left\{\left\|x \right\|_{L_p[a,b]}: \; a, b \in \RR,\; |x(t)|>0,\;t\in (a, b) \right\},
{\rm supp}_{[a, b]} x_{\pm}:= \{t\in [a, b]: x_{\pm}(t) > 0\}
and \varphi_{\lambda,r}^{\alpha, \beta} is the nonsymmetric
(2\pi/\lambda)-periodic spline of Euler of order r. In
particular, we solve the same problems for the intermediate
derivatives x^{(k)}_{\pm}, k=1,...,r-1, with q \ge 1.