On the Jackson theorem for periodic functions in metric spaces with integral metric. II

Authors

  • S. A. Pichugov Днепропетр. нац. ун-т ж.-д. трансп.

Abstract

In the spaces Lψ(Tm) of periodic functions with metric ρ(f,0)ψ=Tmψ(|f(x)|)dx , where ψ is a function of the type of modulus of continuity, we study the direct Jackson theorem in the case of approximation by trigonometric polynomials. It is proved that the direct Jackson theorem is true if and only if the lower dilation index of the function ψ is not equal to zero.

Published

25.11.2011

Issue

Section

Research articles

How to Cite

Pichugov, S. A. “On the Jackson Theorem for Periodic Functions in Metric Spaces With Integral Metric. II”. Ukrains’kyi Matematychnyi Zhurnal, vol. 63, no. 11, Nov. 2011, pp. 1524-33, https://umj.imath.kiev.ua/index.php/umj/article/view/2822.