Improvement of one inequality for algebraic polynomials
Abstract
We prove that the inequality $||g(⋅/n)||_{L_1[−1,1]}||P_{n+k}||_{L_1[−1,1]} ≤ 2||gP_{n+k}||_{L_1[−1,1]}$, where $g : [-1, 1]→ℝ$ is a monotone odd function and $P_{n+k}$ is an algebraic polynomial of degree not higher than $n + k$, is true for all natural $n$ for $k = 0$ and all natural $n ≥ 2$ for $k = 1$. We also propose some other new pairs $(n, k)$ for which this inequality holds. Some conditions on the polynomial $P_{n+k}$ under which this inequality turns into the equality are established. Some generalizations of this inequality are proposed.
Published
25.02.2009
How to Cite
Nesterenko, A. N., T. D. Tymoshkevych, and A. V. Chaikovs’kyi. “Improvement of One Inequality for Algebraic Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 61, no. 2, Feb. 2009, pp. 231-42, https://umj.imath.kiev.ua/index.php/umj/article/view/3015.
Issue
Section
Research articles