On one bifurcation in relaxation systems

  • A. Yu. Kolesov Ярослав. ун-т, Россия
  • E. F. Mishchenko
  • N. Kh. Rozov Моск. ун-т, Россия

Abstract

We establish conditions under which, in three-dimensional relaxation systems of the form $$\dot{x} = f(x, y, \mu),\quad, \varepsilon\dot{y} = g(x, y),\quad x= (x_1, x_2) \in {\mathbb R}^2,\quad y\in{\mathbb R },$$ where $0 < ε << 1, |μ| << 1, ƒ, g ∈ C_{∞}$ the so-called “blue-sky catastrophe” is observed, i.e., there appears a stable relaxation cycle whose period and length tend to infinity as μ tends to a certain critical value μ*(ε), μ*(0) 0 = 0.
Published
25.01.2008
How to Cite
KolesovA. Y., MishchenkoE. F., and RozovN. K. “On One Bifurcation in Relaxation Systems”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, no. 1, Jan. 2008, pp. 63–72, https://umj.imath.kiev.ua/index.php/umj/article/view/3137.
Section
Research articles