Cauchy problem for a semilinear Éidel’man parabolic equation
Abstract
We obtain conditions for the existence and uniqueness of a generalized solution of the Cauchy problem for the equation $$u_1 + \sum_{|\alpha|=|\beta|=2}(-1)^{|\alpha|}D^{\alpha}_x(a_{\alpha \beta}(z, t)D_x^{\beta}u) - \sum_{|\alpha|=|\beta|=1}(-1)^{|\alpha|}D^{\alpha}_y(b_{\alpha \beta}(z, t)D_y^{\beta}u) +$$ $$+ \sum_{|\alpha|=1}c_{\alpha}(z, t) D^{\alpha}_zu + c(z, t, u) = \sum_{|\alpha|\leq2}(-1)^{|\alpha|}D^{\alpha}_x f_{\alpha}(z, t) - \sum_{|\alpha|=1}D^{\alpha}_y g_{\alpha}(z, t)$$ in Tikhonov's class.
Published
25.05.2008
How to Cite
Korkuna, O. E. “Cauchy Problem for a Semilinear Éidel’man Parabolic Equation”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, no. 5, May 2008, pp. 586–602, https://umj.imath.kiev.ua/index.php/umj/article/view/3178.
Issue
Section
Research articles