Exact inequalities for derivatives of functions of low smoothness defined on an axis and a semiaxis

Authors

  • V. F. Babenko
  • V. A. Kofanov
  • S. A. Pichugov Днепропетр. нац. ун-т ж.-д. трансп.

Abstract

We obtain new exact inequalities of the form x(k)qKxαpx(r)1αs for functions defined on the axis R or the semiaxis R+ in the case where r=2,k=0,p(0,),q(0,],q>p,s=1, for functions defined on the axis R in the case where r=2,k=1,q[2,),p=,s=1, and for functions of constant sign on R or R+ in the case where r=2,k=0,p(0,),q(0,],q>p,s= and in the case where r=2,k=1,p(0,),q=s=.

Published

25.03.2006

Issue

Section

Research articles

How to Cite

Babenko, V. F., et al. “Exact Inequalities for Derivatives of Functions of Low Smoothness Defined on an Axis and a Semiaxis”. Ukrains’kyi Matematychnyi Zhurnal, vol. 58, no. 3, Mar. 2006, pp. 291–302, https://umj.imath.kiev.ua/index.php/umj/article/view/3454.