On some extremal problems in the theory of approximation of functions in the spaces $S^p,\quad 1 \leq p < \infty$

Authors

  • S. B. Vakarchuk Днепропетр. ун-т им. А. Нобеля
  • A. N. Shchitov

Abstract

We consider and study properties of the smoothness characteristics $\Omega_m(f, t)_{S^p},\quad m \in \mathbb{N},\quad t > 0$, of functions $f(x)$ that belong to the space $S^p,\quad 1 \leq p < \infty$, introduced by Stepanets. Exact inequalities of the Jackson type are obtained, and the exact values of the widths of the classes of functions defined by using $\Omega_m(f, t)_{S^p},\quad m \in \mathbb{N},\quad t > 0$ are calculated.

Published

25.03.2006

Issue

Section

Research articles

How to Cite

Vakarchuk, S. B., and A. N. Shchitov. “On Some Extremal Problems in the Theory of Approximation of Functions in the Spaces $S^p,\quad 1 \leq P < \infty$”. Ukrains’kyi Matematychnyi Zhurnal, vol. 58, no. 3, Mar. 2006, pp. 303-16, https://umj.imath.kiev.ua/index.php/umj/article/view/3455.