On the Stability of the Maximum Term of the Entire Dirichlet Series

Authors

  • O. B. Skaskiv
  • O. M. Trakalo

Abstract

We establish necessary and sufficient conditions for logarithms of the maximal terms of the entire Dirichlet series $F(z) = \sum^{+\infty}_{n=0}a_n e^{z\lambda_n}$ and $A(z) = \sum^{+\infty}_{n=0}a_n b_n e^{z\lambda_n}$ to be asymptotically equivalent as ${\rm Re}\;z \rightarrow +\infty$ outside some set of finite measure.

Published

25.04.2005

Issue

Section

Short communications

How to Cite

Skaskiv, O. B., and O. M. Trakalo. “On the Stability of the Maximum Term of the Entire Dirichlet Series”. Ukrains’kyi Matematychnyi Zhurnal, vol. 57, no. 4, Apr. 2005, pp. 571–576, https://umj.imath.kiev.ua/index.php/umj/article/view/3623.