Approximation of sine-shaped functions by constants in the spaces $L_p,\; p < 1$
Abstract
We investigate the best approximations of sine-shaped functions by constants in the spaces $L_p$ for $p < 1$. In particular, we find the best approximation of perfect Euler splines by constants in the spaces Lp for certain $p∈(0,1)$.
Published
25.06.2004
How to Cite
BabenkoV. F., KofanovV. A., and PichugovS. A. “Approximation of Sine-Shaped Functions by Constants in the Spaces $L_p,\; P < 1$”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, no. 6, June 2004, pp. 745–762, https://umj.imath.kiev.ua/index.php/umj/article/view/3795.
Issue
Section
Research articles