On Zeros of One Class of Functions Analytic in a Half-Plane
Abstract
We describe sequences of zeros of functions f ≢ 0 analytic in the half-plane \({\mathbb{C}}_ + = \{ z:\operatorname{Re} z >0\}\) and satisfying the condition \((\exists {\tau}_1 \in (0;1))(\exists c_1 >0)(\forall z \in {\mathbb{C}}_ + ):|f(z)| \leqslant c_1 \exp ({\eta}^{\tau }_1 (c_1 |z|)),\) where η: [0; +∞) → (0; +∞) is an increasing function such that the function ln η(r) is convex with respect to ln r on [1; +∞).
Published
25.09.2003
How to Cite
Vynnyts’kyiB. V., and SharanV. “On Zeros of One Class of Functions Analytic in a Half-Plane”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 55, no. 9, Sept. 2003, pp. 1254-9, https://umj.imath.kiev.ua/index.php/umj/article/view/3998.
Issue
Section
Short communications