Entire Dirichlet Series of Rapid Growth and New Estimates for the Measure of Exceptional Sets in Theorems of the Wiman–Valiron Type
Abstract
For entire Dirichlet series of the form F(z)=∑+∞n=0anezλn,0⩽λn↑+∞,n→+∞ , we establish conditions under which the relation F(σ+iy)=(1+o(1))aν(σ)e(σ+iy)λν(σ) holds uniformly in y∈Rasσ→+∞ outside a certain set E for which DE=limsupσ→+∞h(σ)meas(E∩[σ,+∞))=0 where h(σ) is a positive continuous function increasing to +∞ on [0, +∞).Downloads
Published
25.06.2001
Issue
Section
Research articles
How to Cite
Salo, T. M., and O. B. Skaskiv. “Entire Dirichlet Series of Rapid Growth and New Estimates for the Measure of Exceptional Sets in Theorems of the Wiman–Valiron Type”. Ukrains’kyi Matematychnyi Zhurnal, vol. 53, no. 6, June 2001, pp. 830-9, https://umj.imath.kiev.ua/index.php/umj/article/view/4303.