Relations of Borel Type for Generalizations of Exponential Series

Authors

  • O. B. Skaskiv
  • О. M. Trusevich

Abstract

We prove that the condition \(\sum\nolimits_{n = 1}^{ + \infty } {\left( {n{\lambda }_n } \right)^{ - 1} < + \infty }\) is necessary and sufficient for the validity of the relation ln F(σ) ∼ ln μ(σ, F), σ → +∞, outside a certain set for every function from the class \(H_ + \left( {\lambda } \right)\mathop = \limits^{{df}} \cup _f H\left( {{\lambda,}f} \right)\) . Here, H(λ, f) is the class of series that converge for all σ ≥ 0 and have a form $$F\left( {\sigma} \right) = \sum\limits_{n = 0}^{ + \infty } {a_n f\left( {{\sigma \lambda}_n } \right),\quad a_n \geqslant 0,\;n \geqslant 0,}$$ and f(σ) is a positive differentiable function increasing on [0, +∞) and such that f(0) = 1 and ln f(σ) is convex on [0, +∞).

Published

25.11.2001

Issue

Section

Short communications

How to Cite

Skaskiv, O. B., and Trusevich О. M. “Relations of Borel Type for Generalizations of Exponential Series”. Ukrains’kyi Matematychnyi Zhurnal, vol. 53, no. 11, Nov. 2001, pp. 1580-4, https://umj.imath.kiev.ua/index.php/umj/article/view/4379.