Inequalities for complex rational functions
DOI:
https://doi.org/10.37863/umzh.v73i7.455Keywords:
Rational functions, Polynomial, Polar derivative, Inequality, Restricted ZerosAbstract
UDC 517.5
For the rational function r(z)=p(z)/H(z) having all its zeros in |z|≤1, it is known that
|r′(z)|≥12|B′(z)||r(z)|for|z|=1,
where H(z)=∏nj=1(z−cj), |cj|>1, n is a positive integer, B(z)=H∗(z)/H(z), and H∗(z)=zn¯H(1/¯z).
In this paper, we improve the above mentioned inequality for the rational function r(z) with all zeros in |z|≤1 and a zero of order s at the origin.
Our main results refine and generalize some known rational inequalities.
References
A. Aziz, W. M. Shah, Inequalities for a polynomial and its derivative, Math. Inequal. Appl., 7, 379 – 391 (2004), https://doi.org/10.7153/mia-07-39 DOI: https://doi.org/10.7153/mia-07-39
K. K. Dewan, S. Hans, Generalization of certain well-known polynomial inequalities, J. Math. Anal. and Appl., 363, 38 – 41 (2010), https://doi.org/10.1016/j.jmaa.2009.07.049 DOI: https://doi.org/10.1016/j.jmaa.2009.07.049
K. K. Dewan, A. Mir, Inequalities for the polar derivative of a polynomial, J. Interdisciplinary Math., 10, 525 – 531 (2007), https://doi.org/10.1080/09720502.2007.10700512 DOI: https://doi.org/10.1080/09720502.2007.10700512
X. Li, A comparison inequality for rational functions, Proc. Amer. Math. Soc., 139, 1659 – 1665 (2011), https://doi.org/10.1090/S0002-9939-2010-10624-X DOI: https://doi.org/10.1090/S0002-9939-2010-10624-X
X. Li, R. N. Mohapatra, R. S. Rodriguez, Bernstein type inequalities for rational functions with prescribed poles, J. London Math. Soc., 51, 523 – 531 (1995), https://doi.org/10.1112/jlms/51.3.523 DOI: https://doi.org/10.1112/jlms/51.3.523
R. Osserman, A sharp Schwarz inequality on the boundary for functions regular in the disk, Proc. Amer. Math. Soc., 12, 3513 – 3517 (2000), https://doi.org/10.1090/S0002-9939-00-05463-0 DOI: https://doi.org/10.1090/S0002-9939-00-05463-0
A. Zireh, Generalization of certain well-known inequalities for the derivative of polynomials, Anal. Math., 41, 117 – 132 (2015), https://doi.org/10.1007/s10476-015-0109-2 DOI: https://doi.org/10.1007/s10476-015-0109-2