Local properties of gaussian random fields on compact symmetric spaces and theorems of the Jackson-Bernstein type

Authors

  • A. A. Malyarenko

Abstract

We consider local properties of sample functions of Gaussian isotropic random fields on the compact Riemann symmetric spaces M of rank one. We give conditions under which the sample functions of a field almost surely possess logarithmic and power modulus of continuity. As a corollary, we prove the Bernshtein-type theorem for optimal approximations of functions of this sort by harmonic polynomials in the metric of space L2(M). We use the Jackson-Bernshtein-type theorems to obtain sufficient conditions of almost surely belonging of the sample functions of a field to classes of functions associated with Riesz and Cesaro means.

Published

25.01.1999

Issue

Section

Research articles

How to Cite

Malyarenko, A. A. “Local Properties of Gaussian Random Fields on Compact Symmetric Spaces and Theorems of the Jackson-Bernstein Type”. Ukrains’kyi Matematychnyi Zhurnal, vol. 51, no. 1, Jan. 1999, pp. 60–68, https://umj.imath.kiev.ua/index.php/umj/article/view/4583.