On an equality equivalent to the Riemann hypothesis

  • V. V. Volchkov

Abstract

We prove that the Riemann hypothesis on zeros of the zeta function ζ(s) is equivalent to the equality $$\int\limits_0^\infty {\frac{{1 - 12t^2 }}{{(1 + 4t^2 )^3 }}dt} \int\limits_{1/2}^\infty {\ln |\varsigma (\sigma + it)|d\sigma = \pi \frac{{3 - \gamma }}{{32}},}$$ where $$\gamma = \mathop {\lim }\limits_{N \to \infty } \left( {\sum\limits_{n = 1}^N {\frac{1}{n} - \ln N} } \right)$$ is the Euler constant.
Published
25.03.1995
How to Cite
VolchkovV. V. “On an Equality Equivalent to the Riemann Hypothesis”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 47, no. 3, Mar. 1995, pp. 422–423, https://umj.imath.kiev.ua/index.php/umj/article/view/5435.
Section
Short communications