A criterion for Banach manifolds to be finite-dimensional
Abstract
We extend the results obtained in [1] to the case of arbitrary Banach spaces and manifolds. We give an example of a continuous bijective mapping with discontinuous inverse which acts in a Banach space and differs from the identical mapping only in an open unit ball. A criterion for a Banach manifold to be finite-dimensional is established in terms of the continuity of inverse operators.Downloads
Published
25.12.1995
Issue
Section
Short communications
How to Cite
Savkin, V. I. “A Criterion for Banach Manifolds to Be Finite-Dimensional”. Ukrains’kyi Matematychnyi Zhurnal, vol. 47, no. 12, Dec. 1995, pp. 1712–1713, https://umj.imath.kiev.ua/index.php/umj/article/view/5567.