Reducibility of nonlinear almost periodic systems of difference equations on an infinite-dimensional torus

  • D. I. Martynyuk
  • N. A. Perestyuk
  • A. M. Samoilenko

Abstract

Sufficient conditions of reducibility of the nonlinear system of difference equations $x(t + 1) = x(t) + \omega + P(x(t), t) + \lambda$, to the system $y(t + 1) = y(t) + \omega$ are found; here, $x, \omega, \lambda \in \textbf{m}$, and the infinite-dimensional vector function $P(x(t),t)$ is $2\pi t$ - periodic in $x_i\; (i = 1,2,...)$ and almost periodic in $t$ with the frequency basis $\alpha$.
Published
25.09.1994
How to Cite
MartynyukD. I., PerestyukN. A., and SamoilenkoA. M. “Reducibility of Nonlinear Almost Periodic Systems of Difference Equations on an Infinite-Dimensional Torus”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 46, no. 9, Sept. 1994, pp. 1216–1223, https://umj.imath.kiev.ua/index.php/umj/article/view/5638.
Section
Research articles