Some results in quasitopological homotopy groups

  • T. Nasri Dep. Pure Math., Faculty Basic Sci., Univ. Bojnord, Iran
  • H. Mirebrahimi Dep. Pure Math., Center Excellence in Analysis on Algebraic Structures, Ferdowsi Univ. Mashhad, Iran
  • H. Torabi Dep. Pure Math., Center Excellence in Analysis on Algebraic Structures, Ferdowsi Univ. Mashhad, Iran
Keywords: Homotopy group, Quasitopological group, Fibration

Abstract

UDC 515.4

We show that the $n$th quasitopological homotopy group of a topological space is isomorphic to $(n-1)$th quasitopological homotopy group of its loop space and by this fact we obtain some results about quasitopological homotopy groups. Finally, using the long exact sequence of a based pair and a fibration in qTop introduced by Brazas in 2013, we obtain some results in this field.


References

A. Arhangelskii, M. Tkachenko, Topological groups and related structures, Atlantis Stud. Math. (2008), https://doi.org/10.2991/978-94-91216-35-0 DOI: https://doi.org/10.2991/978-94-91216-35-0

H. J. Belloa, M. J. Chascoa, X. Domnguezb, M. Tkachenko, Splittings and cross-sections in topological groups, J. Math. Anal. and Appl., 435, № 2, 1607 – 1622 (2016), https://doi.org/10.1016/j.jmaa.2015.11.040 DOI: https://doi.org/10.1016/j.jmaa.2015.11.040

D. Biss, The topological fundamental group and generalized covering spaces, Topology and Appl., 124, № 3, 355 – 371(2002), https://doi.org/10.1016/S0166-8641(01)00247-4 DOI: https://doi.org/10.1016/S0166-8641(01)00247-4

J. Brazas, The fundamental group as topological group, Topology and Appl., 160, № 1, 170 – 188 (2013), https://doi.org/10.1016/j.topol.2012.10.015 DOI: https://doi.org/10.1016/j.topol.2012.10.015

J. Brazas, The topological fundamental group and free topological groups, Topology and Appl., 158, № 6, 779 – 802 (2011).

J. Brazas, Homotopy mapping spaces, Thesis (Ph.D.) – Univ. New Hampshire, ProQuest LLC, Ann Arbor, MI, 213 pp. (2011).

J. S. Calcut, J. D. McCarthy, Discreteness and homogeneity of the topological fundamental group, Topology Proc., 34, 339 – 349 (2009).

P. Fabel, Multiplication is discontinuous in the Hawaiian earring group (with the quotient topology), Bull. Pol. Acad. Sci. Math., 59, № 1, 77 – 83 (2011), https://doi.org/10.4064/ba59-1-9 DOI: https://doi.org/10.4064/ba59-1-9

P. Fabel, Compactly generated quasi-topological homotopy groups with discontinuous multiplication, Topology Proc., 40, 303 – 309 (2012).

H. Ghane, Z. Hamed, B. Mashayekhy, H. Mirebrahimi, Topological homotopy groups, Bull. Belg. Math. Soc. Simon Stevin 15, № 3, 455 – 464 (2008).

T. Nasri, B. Mashayekhy and H. Mirebrahimi, On quasitopological homotopy groups of inverse limit spaces, Topology Proc., 46, 145 – 157 (2015).

A. Pakdaman, H. Torabi, B. Mashayekhy, On $H$-groups and their applications to topological fundamental groups, preprint, arXiv:1009.5176v1.

Joseph J. Rotman, An introduction to algebraic topology, Grad. Textx in Math., 119, Springer-Verlag (1988), https://doi.org/10.1007/978-1-4612-4576-6 DOI: https://doi.org/10.1007/978-1-4612-4576-6

R. M. Switzer, Algebraic topology homotopy and homology, Springer-Verlag (1975). DOI: https://doi.org/10.1007/978-3-642-61923-6

H. Torabi, A. Pakdaman, B. Mashayekhy, Topological fundamental groups and small generated coverings, Math. Slovaca, 65, № 5, 1 – 12 (2011), https://doi.org/10.1515/ms-2015-0079 DOI: https://doi.org/10.1515/ms-2015-0079

Z. Virk, Small loop spaces, Topology and Appl., 157, № 2, 451 – 455 (2010)б https://doi.org/10.1016/j.topol.2009.10.003 DOI: https://doi.org/10.1016/j.topol.2009.10.003

H. Wada, Local connectivity of mapping space, Duke Math. J., 22, № 3, 419 – 425 (1955).

Published
24.12.2020
How to Cite
Nasri, T., H. Mirebrahimi, and H. Torabi. “Some Results in Quasitopological Homotopy Groups”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, no. 12, Dec. 2020, pp. 1663-8, doi:10.37863/umzh.v72i12.564.
Section
Research articles